XIV

ON THE FUNDAMENTAL EQUATIONS OF ELECTRO-
MAGNETICS FOR BODIES IN MOTION

(Wiedemann’'s Ann. 41, p. 369, 1890)

AN account which I recently published! of electromagnetic
processes in bodies at rest agreed, as far as the matter was
concerned, with Maxwell’s theory, but as far as the manner
was concerned it aimed at a more systematic arrangement.
From the outset the conception was insisted upon, that the
electric and magnetic forces at any point owe their action to
the particular condition of the medium which fills the space
at that point; and that the causes which determine the exist-
ence and variations of these conditions are to be wholly sought
in the conditions of the immediate neighbourhood, excluding
all actions-at-a-distance. It was further assumed that the
electric and magnetic state of the medium which fills space
could be completely determined for every point by a single
directed magnitude for each state; and it was shown that the
restriction which lies in this assumption only excluded from con-
sideration comparatively unimportant phenomena. The intro-
duction of potentials into the fundamental equations was avoided.

The question now arises whether, while adhering strictly
to the same views and the same limitations, the theory can be
extended so as to embrace the course of electromagnetic pheno-
mena in bodies which are in motion. We remark, in the first
place, that whenever in ordinary speech we speak of bodies in
motion, we have in mind the motion of ponderable matter
alone. According to our view, however, the disturbances of
the ether, which simultaneously arise, cannot be without effect ;

1 See XIII. p. 195.
R .
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and of these we have no knowledge. This is equivalent to
saying that the question here raised cannot at present be
treated at all without introducing arbitrary assumptions as to
the motion of the ether. Furthermore, the few existing
indications as to the nature of the motion of the ether
lead us to suppose that the question above raised is
strictly to be answered in the negative, for it appears to
follow from such indications as we have, that even in the
interior of tangible matter the ether moves independently of
it; indeed, this view can scarcely be avoided in view of the
fact that we cannot remove the ether from any closed space.
If now we wish to adapt our theory to this view, we have to
regard the electromagnetic conditions of the ether and of
the tangible matter at every point in space as being in a
certain sense independent of each other. Electromagnetic
phenomena in bodies in motion would then belong to that
class of phenomena which cannot be satisfactorily treated
~ without the introduction of at least two directed magnitudes
for the electric and two for the magnetic state.

But the state of the case is different if we explicitly con-
tent ourselves with representing electromagnetic phenomena
in a narrower sense—up to the extent to which they have
hitherto been satisfactorily investigated. We may assert that
among the phenomena so embraced there is not one which
requires the admission of a motion of the ether independently
of ponderable matter within this latter; this follows at once
from the fact that from this class of phenomena no hint has
been obtained as to the magnitude of the relative displace-
ment. At least this class of electric and magnetic pheno-
mena must be compatible with the view that no such dis-
placement occurs, but that the ether which is hypothetically
assumed to exist in the interior of ponderable matter only
moves with it. This view includes the possibility of taking
into consideration at every point in space the condition of
only one medium filling the space; and it thus admits of the
question being answered in the affirmative. For the purpose
of the present paper we adopt this view. It is true that a
theory built on such a foundation will not possess the advan-
tage of giving to every question that may be raised the correct
answer, or even of giving only one definite answer; but it at
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least gives possible answers to every question that may be
propounded, i.e. answers which are not inconsistent with the
observed phenomena nor yet with the views which we have
obtained as to bodies at rest.

We therefore assume that at every point a single definite
velocity can be assigned to the medium which fills space ;
and we denote the components of this in the directions of
z, ¥, 2 by a, B, v. We regard these magnitudes as being
everywhere finite, and treat them as varying continuously
from point to point. Of course we also admit discontinuous
variations, but we regard them as being only the limiting cases
of very rapid continuous variations. We further limit each
permissible discontinuity by the restriction that it shall in no
case lead to the formation of empty spaces. The necessary and
sufficient condition for this is that the three differential coeffi-
cients da/dx, dB/dy, dy/dz should everywhere be finite.
Wherever we find tangible matter in space we definitely de-
duce the values of a, B, y from the motion of this. Wherever
we do not find in the space any tangible matter, we may
assign to a, B, y any arbitrary value which is consistent with
the given motions at the boundary of the empty space, and is
of the same order of magnitude. 'We might, for example, give
a, 3, y those values which would exist in the ether if it moved
like any gas. We further use all the symbols which occur in
the preceding paper in the same sense here. We here regard
electric and magnetic force as signs of the condition of the
moving matter in the same sense in which we have hitherto
regarded them as signs of the conditions of matter at rest.
Electric and magnetic polarisation we simply regard as a
second and equivalent means of indicating the same conditions.
We also assign to the lines of force, by which we represent
these polarisations, precisely the same meaning.

1. Statement of the Fundamental Equations for Bodies in
Motion

At any point of a body at rest the time-variation of the
magnetic state is determined simply by the distribution of the
electric force in the neighbourhood of the point. In the
case of a body in motion there is, in addition to this, a second
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variation which at every instant is superposed upon .the first,
and which arises from the distortion which the neighbourhood
of the point under consideration experiences through the
motion. We now assert that the influence of the motion is
of such a kind that, if it alone were at work, it would carry
the magnetic lines of force with the matter. Or more pre-
cisely :—Supposing that at any given instant the magnetic
state of the substance was represented in magnitude and
direction by a system of lines of force; then a system of lines
of force passing through the same material points would also
represent in magnitude and direction the magnetic state at
any other time, if the effect of the motion alone had to be
considered. The corresponding statement holds good for the
variation which the electric polarisation experiences through
the motion. These statements suffice for extending to moving
bodies the theory already developed for bodies at rest; they
clearly satisfy the conditions which our system of itself
requires, and it will be shown that they embrace all the
observed facts.!

In order to represent our ideas symbolically, let us first,
during the time-element d¢, fix our attention upon a small
surface-element in the interior of the moving matter, which at
the beginning of this time-element lies parallel to the yz-plane,
and during the motion is displaced and distorted with the
matter. We distribute and draw the magnetic lines of force
so that the number of them which penetrates the surface-
element at the beginning of the time df is £. Everywhere and
always £, 2, XU will then denote the number of lines of force
which traverse a surface-element of equal area parallel to the
yz, x2, xy-planes respectively. The number of lines of force
which traverses our particular surface-element now varies
owing to several causes; we shall consider separately the
amount which each separate cause contributes. In the first
place, the number would vary even if the surface-element
remained in its original position; this variation amounts to
(@€/dt)dt, if d£/dt denotes the rate of variation of £ at a
point which, with reference to our system of co-ordinates,
is at rest. In the second place, since the surface-element is
displaced with the velocity a, B, v to places where other values

1 [See Note 33 at end of book.]
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of £ obtain, the rate of variation due to this cause amounts to
(ad€/dz+ BdE/dy + yd€/dz)dt. In the third place, the plane
of the element rotates with velocity da/dy about the z-axis,
and with velocity da/dz about the y-axis, and lines of force
will be embraced by the element which originally were parallel
to it; the amount due to this cause is—(Nda/dy + Nda/dz)dL.
Finally the surface of the element increases with velocity
dB/dy+ dry/dz; and for this cause the number increases by an
amount £(dB/dy + diy/dz)dt. If the sum of these quantities is
equal to zero, there can be no change in the number; we have
therefore reckoned up completely all causes of variation, and
since all the amounts are very small, their sum represents the
total variation. We may also analyse the total variation in
another manner which has a more distinet physical significance,
viz. into the amount which the presence of the electric forces in
the neighbourhood, and the amount which the motion would
contribute, each by itself and in the supposed absence of the
other cause. According to the laws which hold good for
conductors at rest, the first amounts to (¢Z/dy — dY /dz)d¢. 1/A ;
according to the statement which we have just made, the latter
is zero; the first of itself represents the total variation. We
equate the two expressions found for the total variation,
divide by d¢, multiply by A, add and subtract the terms
adQll/dy + adQ/dz, rearrange the terms and thus obtain, after
treating similarly the other components of the magnetic force
and the components of the electric force, the following system
of fundamental equations for bodies in motion :—
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which are completed by the linear relations which connect the
polarisations and the current-components with the forces.
The constants of these relations are to be regarded as functions
of the varying conditions of the moving matter, and to this
extent as functions of the time as well.!

Our method of deducing the equations (1,) and (1,) does
not require that the system of co-ordinates used should
remain absolutely fixed in space. We can, therefore,
without change of form, transform our equations from the
system of co-ordinates first chosen to a system of co-ordinates
moving in any manner through space, by taking a, B, ¢ to
represent the velocity-components with reference to the
new system of co-ordinates, and referring the constants
e, w N, X', Y/, Z/, which depend upon direction, at every
instant to these. From this it follows that the absolute
motion of a rigid system of bodies has no effect upon any
internal electromagnetic processes whatever in it, provided that
all the bodies under consideration, including the ether as well,
actually share the motion. It further follows from this
consideration that even if only a single part of a moving
system moves as a rigid body, the processes which occur in this
part follow exactly the same course as in bodies at rest. If,
nevertheless, the existing motion does exert any influence
upon this part, this influence can only arise in those portions
of the system in which distortion of the elements occurs, and
must be propagated thence into those portions which move

1 [See Note 34 at end of book.]
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after the manner of rigid bodies. If, for example, a solid mass
of metal is suddenly displaced in the magnetic field, then,
according to our equations, the only direct or simultaneous
effect of this disturbance is upon the surface and the neigh-
bourhood of the metallic mass; it here gives rise to electric
forces which afterwards produce secondary effects—penetrating
nto the interior of the mass and giving rise to currents in it.

The equations here stated are in form and intention closely
related to those by which von Helmholtz in vol. 1xxviii. of
Borchardt’s Journal represented the behaviour of the electric
and magnetic forces in moving bodies.! From this source the
notation is partly borrowed. And yet our equations differ
from those given by v. Helmholtz not only in form, but
also in meaning, at least with regard to such members as
have not hitherto been tested by experiment. Maxwell
himself does not seem to me to have aimed in his treatise at
any systematic treatment of the phenomena in moving bodies.?
The numerous references which he makes to such phenomena
are either confined to approximations, or relate only to cases
which do not involve any necessary distinction between the
theories of direct and of indirect action.

2. The Physical Meaning of the Separate Terms

Equations (1,) and (1,) tell us the future value of the
polarisations at every fixed point in space or, if we prefer
it, in each element of the moving matter, as a definite
and determinate consequence of the present electromagnetic
state and the present motion in the neighbourhood of
the point under consideration. This is the physical meaning
of them in accordance with the conception which our system
represents. The common conception of the relations expressed
by these equations is quite different. It regards the rates of
variation of the polarisations on the left-hand side as the
cause, and the induced forces on the right-hand side as the

1 v. Helmholtz, Qes. Abkandl. 1, p. 745 ; Borchardt’s Journ. f. Mathem. 78,
p. 273, 1874.

2 [This statement is not quite correct. It does indeed hold good for Maxwell’s
treatise, to which it refers; but in his paper ‘‘On Physical Lines of Force
(Phil. Mag., April 1861) Maxwell has himself given a complete and systematic

treatment of the phenomena in moving bodies. Unfortunately I had not noticed
this when writing my paper.]
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consequence thereof. This conception has arisen through the
fact that the polarisations and their variations are usually sooner
and more clearly known to us than the forces which simultane-
ously arise; so that, as far as our knowledge goes, the left-hand
sides of the equations are prior to the right-hand sides. In the
cases which chiefly interest us this conception has indeed very
great advantages; but from the general standpoint it has the
disadvantage that the forces are not definitely determined
by the rates of variation of the polarisations of the opposite
kind, but contain terms which are independent of these varia-
tions. The common theory gets out of this difficulty by setting
these terms as electrostatic or magnetic forces in opposition to
the electromagnetic forces which are alone, according to that
theory determined by our equations. Although we do not
approve of such a separation, and hence do not accept the
common conception as to the causal relationship, it is still
interesting to show how the partial forces which are intro-
duced in the usual theory are contained in the separate terms
of our equations. For this purpose we split up the forces in
the form X =X, + X,, etc, L=L, + L, etc., and put—

X, = A(yU - BY), L, =A(B3—v0),
(2R Y, = A(alt —qf), M, = A(yX — ad),
Zy = A(BE —allD), N, = A(al) — BX),

We thus obtain for X,, Y, Z, L, M, N, equations which
result from the equations (1,) and (1,) for X, Y, Z, L, M, N
by omitting the second and third terms on the left-hand side.
Now the resultant of X, Y, Z, is an electric force which arises
as soon as a body moves in the magnetic field. It is
perpendicular to the direction of the motion and to the
direction of the magnetic lines of force; it is that force which
in a narrower sense we are accustomed to denote as the
electromotive force induced through motion. But it should
be observed that, according to our views, the separation of this
from the total force can have no physical meaning; for it
would be in opposition to our conception to suppose that the
magnetic field within a body could have a motion relative to it.
The counterpart to the force X; Y; Z, is the force L, M; N,
which must make itself felt in a non-conductor when the
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latter is displaced through the lines of force of an electric
field; but this is not yet confirmed by experience and is
absent from the older electromagnetics.

Let us now turn our attention to the resultant of L, M, N,
and suppose the general solutions of the equations containing
these quantities to be represented as functions of the quantities

u, dX /'dt, a(dX / dx + (Zr)l‘/"dg/ +d3 /dz), ete.

Let us put these latter quantities in the functions all equal to
zero; there still remains a first part of the force which does
not owe its origin to electromagnetic causes. Its components
necessarily possess a potential ; it represents that distance-
force which, according to the older view, proceeds from magnetic
masses. A second part of the foree is given by that part of
the functions which vanishes when, and only when, », v, w
vanish. It contains the magnetic distance-force which appears
to proceed from the actual electric currents. We obtain the
whole of the electromagnetic part of the force L, M, N, by
replacing in the expression of the second part the quantity
47 Aw by the quantity

dX dX dY) d&
47TAu+A?l? +Aa<d—x +@+ E)

and treating v and w similarly. This corresponds to the state-
ment that as far as the production of a magnetic distance-
force is concerned, an actual current is to be regarded as
equivalent in the first place to the variation of an electric
polarisation, and in the second place to the convective motion
of true electricity. The latter part of this statement finds its
requisite confirmation in Rowland’s experiment.

Finally, let us consider the force X, ¥, Z,, We can
separate from this force as well a part which is independent of
time-variations of the system, which possesses a potential, and
which is treated as an electrostatic distance-force. ~From the
residue of the electromagnetic force which remains we can
detach a second part, which vanishes when, and only when,
the quantities d£/dt, d01/dt, d¥t/dt vanish. It clearly repre-
sents the force of induction which arises from varying mag-
netic moments, but it also contains in a hidden form that
electric force which owes its origin to varying currents.
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Finally, there remains a third and last part which can be
interpreted as an electric force produced by a convective motion
of magnetism, and in which must be found the explanation
of certain known phenomena of unipolar induction.

These considerations show that we might also have arrived
at the system of equations (1,) and (1) by summing up the
effects of the separate forces required by the older theories,
and adding a series of hypothetical terms which can neither
be confirmed nor disproved by existing experience. The way
which we have followed requires a smaller number of inde-
pendent hypotheses. We now proceed to deduce from our
equations the most important general results.

3. Motion of Magnets and of Electrostatically Charged Bodies

As independent causes of variation of the electric or mag-
netic polarisation there appear in our scheme first the magnetic
or electric forces respectively, and secondly the motion of
material bodies, According to our conclusions in the case
of bodies at rest, the first cause produces no displacement of
true electricity in non-conductors and no displacement of
true magnetism at all. The latter cause of itself produces a
displacement of electricity and of magnetism towards the space
at rest, but it can cause no displacement towards the matter
in motion ; for by its motion this matter carries with it the
lines of force, and electricity and magnetism may be regarded
as the free ends of these lines. Hence when both causes act
together there can be no relative motion of true magnetism
with reference to the surrounding matter ; nor can there be
any such relative motion of true electricity, at any rate in
- non-conductors.  Under these circumstances electricity and
magnetism move with the matter in which they are present,
as if they were indestructible and adhered firmly to the parts
thereof. In order to represent this same idea symbolically, let us
differentiate first the equations (1,) and then the equations (1,)
with respect to z y z, multiply by the volume-element dr whicly
We suppose to remain at rest, and to which the quantities
£, AT, ete, refer. Let dr’ denote a volume-element which at
every instant encloses the matter contained at the present
instant in dr; let de’ and dim’ denote the amounts of true elec-
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tr,icity and true magnetism respectively contained in d7/, and
€’ NV, ete., the values of €, U1, etc., with reference to dr. We
thus obtain—

d d€ dOt dUW
Gt %)
d rd€ dOT dUW d /d€ dO0 dT
+%<@+(Ty+a‘g> @(@J’@W‘g)
] d /df dUT dT
(32 +7¢5(@+@+E>
da dB dy\ /dE dOT dX
<@+@+B%)(d_x+?i§]+ dz>}d7
(l{(di’ anv dZ‘(’)dT,% _ 4wtﬁrg’ _o.
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These equations embrace the statements already made,
and complete them as far as conductors are concerned.
If the velocities @ B8y are so small that the electric
and magnetic conditions may at each instant remain in-
finitely near to the stationary state, and if we restrict
ourselves to the consideration of such quasi-stationary states,
then the results which we have obtained are sufficient
and necessary to determine the interdependence of the
various states which may arise from each other. The intro-
duction of these results into such problems enables us to
replace the complete, but very complicated, equations (1,) and
(1,) by the equivalent and very simple equations which hold
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good for statical problems in bodies at rest, and which can
be deduced from equations (1,) and (1,) by equating to zero
the velocities and the time-variations at all points of the space.
Such a simplification of the statements is not possible without
introducing the idea of electricity and of magnetism; and it
seems t0 me that this is the principal reason why these ideas
are indispensable in the study of electrostatics and in the
representation of magnetic phenomena.

4. Induction in Closed Cireuits

The greatest velocities which we can assign to the sur-
rounding bodies are so small compared with the velocity of
light—the reciprocal of which appears as the multiplier of
a, 3, v in equations (1,) and (1,)—that electromagnetic effects
due purely to motion can only be investigated with precision
in the particular case in which these effects consist in the
" induction of an electric current in a closed metallic con-
ductor. In order to determine the magnitude of such effects
in closed conductors, let us consider any unclosed portion ¢
of a surface in the interior of the matter under consideration,
and which is displaced with the material particles during
the motion. Let s represent the instantaneous limiting curve
of this surface-element. Let ¢’ denote the number of mag-
netic lines of force which at any time traverse the surface ¢,
We shall again consider the causes which produce (independ-
ently of each other) a variation in ¢’ as being two—in the
first place, the electric forces; and in the second place, the
motion of matter. Tf the first cause alone were at work, the
system would be at rest, and so the rate of variation of ¢’
multiplied by A would be equal to the integral of the electric
force taken around the whole extent of s; the integral,
viewed from the side of the positive normal, being taken
clock-wise. If the motion alone were at work, it would not
produce any variation of ¢, for it would carry forward the
lines of force traversing the surface ¢ together with this sur-
face itself. Hence in the actugl case in which the two
causes act together, the integral of the electric force taken
in the given sense around any closed curve s is equal to A
multiplied by the rate of variation of the number of mag-
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netic lines of force which traverse any surface which was
originally bounded by the curve s, but which follows the
motion. This law also holds good for the special case—the
only one which is important from an experimental point of
view—in which the curve s follows the path of a linear con-
ductor ; nor does it become invalid when the motion is suffi-
ciently slow to allow all the states which arise to appear as
being steady, and the current as uniform in all parts of the
conductor.

To represent this symbolically, let 'z, n'y, n' 2z denote the
angle which the normal to the element de of the moving sur-
face & makes at any instant with the axes. Let £ 0¥ ZI’ be
the values of € AT X1 in this element. Further, let dow, n,x,
ny, ez denote the values of dé, n’z, 7'y, n’# in the original
position. 'We observe that, from purely geometrical considera-
tions, we have

d d d
(ﬁ(da’) cos 7/,x) = dw{ (—E + 7 ) COS N,z — B cos N,y — -l COS n,z},

dy dz dz

d , da da dy dy
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from which, with the aid of equations (1,) and (1,) we get

Ad;’ /’ <(lZ (lY) dX dZ) (dY dX) p
Ft—.{ gy-_dz Cos n,x+ > _dx COs n,Y + (Zd}—dy COS?’L,Z} @

= (Xdz+Ydy+ Zdz),

the last integral being taken around the whole extent s of the
surface dw. :

In special cases these results admit of simplification.  If it
is possible to shut off a singly connected space which entirely
contains the moving curve s, and in which there is no true
magnetism, it is clearly immaterial whether the auxiliary sur-
face w follows the motion of the material parts or suffers a dis-
placement independently of these, provided it remains within
the space referred to, and is bounded by the curve s. 1In this
case we may more simply and yet definitely assert that the in-
tegral of the electric force taken around the closed curve is equal
to the time-rate of variation of the number of magnetic lines of
force embraced by the curve s, multiplied by A. If we retain
this same supposition, and if in addition the magnetic polarisa-
tion at every fixed point of the space is constant in spite of
the motion of the curve s we may assert that the induced
force along the curve is equal to A multiplied by the number
~of magnetic lines of force, considered as at rest, which the
curve s cuts in a given direction during its motion. If the
magnetic forces, under the influence of which the curve s
moves, are simply and solely due to the influence of an
uniform current along a path ¢, then the number of lines of
force traversing s is, as we have seen,! equal to the product of
the Neumann’s potential of the curves s and ¢ and of the
current in £ In this case, therefore, the variation in the
above-mentioned product per unit time multiplied by A gives
the electromotive force acting along the curve s.

In one form or another these theorems embrace all known
cases of induction which have been carefully investigated.
The laws of unipolar induction, too, can be easily deduced
from the general propositions. Quantitative investigations of
induction-phenomena in bodies of three dimensions have only
been carried out to a limited extent. The equations by which

1 See p. 232.
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Jochmann' and others have succeeded in representing the
known facts, follow directly from our general equations by
omitting a number of terms which naturally disappear in con-
sequence of the special nature of the problem

We must not omit to mention that we may represent the
general theorem of induction in another and a very elegant
form if we allow ourselves to speak of an independent motion
of the lines of force, and to regard in general every variation of
the magnetic polarisation as the result of such a motion of the
lines of force. If we do this, we may state generally and
completely that the induced electromotive force in any closed
curve s is equal to the product of A into the number of lines
of magnetic force which are cut by the curve s in a definite
sense per unit time. But although no objection can be raised
to the occasional use of the conception therein involved,
nevertheless it will be better for us to avoid it in the present
paper. For the conception employed by Faraday, and developed
by Poynting,?® of a motion of the lines of force relatively to
the surrounding medium, is indeed a highly remarkable one,
and may be capable of being worked out; but it is entirely
different from the view here followed, according to which the
lines of force simply represent a symbol for special conditions
of matter. There is no meaning in speaking of an independent
motion of such conditions. It should also be observed that
the controllable decrease and increase of the lines of force in
all parts of the space does not definitely determine the pre-
supposed motion of the lines of force. Hence the above-
mentioned proposition would not of itself decide definitely the
magnitude of the induction in all cases; it should rather be
regarded as a definition by means of which one among the
possible motions of the lines of force is pointed out as the
effective motion.

5. Treatment of Surfaces of Slip

At the boundary of two heterogeneous bodies the electro-
magnetic constants may pass from one value to another dis-
continuously ; but the velocity - components a8y do not

1 Jochmann, Crelle’s Journ. 63, p. 1, 1863.

2 J. H. Poynting, Phil. Trans. 2, p. 277, 1885. [See also Note 35 at end of
book.]
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necessarily undergo discontinuous changes at the same time at
this bounding surface. The surfaces of separation between
solid bodies and fluids, or between fluids themselves, are to be
regarded as surfaces of discontinuity of this kind ; and we are
free to suppose that the transition at the boundary between a
body and the ether is of the same nature.» The appearance of
continuous motion at such surfaces of discontinuity does not
give rise to any new considerations; the conditions of the
material parts on both sides of the surface are connected by
the same relations as those which obtain for bodies at rest.
But the case is different when the velocity-components also
undergo discontinuous variations at the surface. As observed
in our Introduction, the discontinuity can only refer to the
components of the velocity which are parallel to the surface of
separation ; we therefore rightly denote surfaces of this kind
as surfaces of slip (Gleitflichen). They may exist between
solid bodies which are in contact with one another; it is also
occasionally convenient and—seeing how ignorant we are as
to the actual circumstances—permissible, to regard the surface
of separation between a body and the ether as a surface of
slip. As we have already remarked in the introduction, we
treat a surface of slip as the limiting case of a transition-layer
in which the motions, and possibly the electromagnetic con-
stants as well, change very rapidly, but still continuously from
one value to another. This conception is justified by the fact
that it does not lead to any results in contradiction with
experience; and it enables us to assert that the general pro-
positions which we have already deduced do mnot become
invalid in a system in which there are surfaces of slip. In
order that our conception may suffice to determine the conditions
in the surface of separation, the nature of the transition must be
subjected to certain general restrictions. We give these restric-
tions in the form of hypotheses respecting the finiteness of certain
magnitudes in the transition-layer itself. We assume that there
are no electromotive forces at the surface of slip. We place
the origin of the system of co-ordinates to which we refer at
any point of the element of the transition-layer under con-
sideration, and let it also follow this point during the motion.
We further give the z-axis such a direction that it stands
perpendicular to the element of the surface of slip, and also



X1V FOR BODIES IN MOTION 257

remains perpendicular during the motion. Thus the transition-
layer always forms the immediate neighbourhood of the zy-
plane. We assume that even in the transition-layer itself
the quantities

XY ZL MN

X n & £ ux

v v ow oa B v

remain finite; and in the same way that the differential co-
efficients of these quantities parallel to the surface of slip, ..
with respect to 2 and ¥, and also the differential coefficients of

the quantities
XN 3 £ 0"

with reference to the time ¢, remain finite. On the other
hand, we should allow the differential coefficients with respect
to z to become infinite, with the exception of dy/dz, which, in
accordance of the remark in the Introduction already referred
to, must remain finite. Everywhere in the transition-layer,
accordingly, « itself is vanishingly small. These assumptions
being made, we multiply the first two equations of the system
(1,) and (1,) by dz, integrate with respect to z through the
transition-layer between two points lying exceedingly near to
it, and observe that, on account of the shortness of the
integration-path, the integral of every quantity which remains
finite in the layer vanishes. We thus obtain the following
four equations, in which the index 1 refers to the one side,
the index 2 to the other side, of the surface of separation—

da

dz

2 2
d
(54) Afn dz=Y,—-Y,, —Afnd—éd;z:XQ—Xl;
1 1

2 2
d da
(5y) — A/éc—zdz =M,— M, Ajésﬁdz =L,— L.
) dz dz
1 1

These equations give the mutual relations between the force-

components tangential to the surface of separation on both sides

of it. Here, as in the case of bodies at rest, the components

normal to the surface are connected by the condition that the

surface-density of the true magnetism at the surface of separation
S
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cannot alter excepting by convection, and that the surface-
density of the true electricity can only alter either by convec-
tion or by an actual current.

If the element of the surface of separation under con-
sideration is not charged with any true electricity or true
magnetism, & and X are constant in the interior of the transi-

tion-layer. In this case the equations (5,) and (5,) take the
simpler forms

(50) Xz - Xl = An(Bl - 32)) Y2 - Yl = An(“‘z - a’l))
(5(1) L,—- L, = Aé’(ﬁz - B 1\12 - M, = Ag(“l — a,).

As an example of the application of these equations, let us
consider the case of a solid of revolution rotating about its
axis within a hollow in another solid body which -closely
surrounds it. If this system is submitted to the action of
a magnetic field which is symmetrical with reference to the
axis of rotation, there will not be, according to our conception,
either in the interior of the rotating body, or in the interior of
the surrounding mass, any cause for the appearance of electric
forces. Such forces are, in fact, absent when the magnetic
excitement is entirely restricted to the interior of the one body or
of the other. But if the lines of force penetrate through the
surface along which the two bodies slide past one another, the
electromotive forces expressed by equation (5.) are excited at
this surface; these forces spread into the interior of the bodies
and there produce the electric stresses and currents whose
existence is shown by experiment. If the bodies under con-
sideration are non-conductors and are subjected to the influence
of electric forces which are distributed symmetrically with refer-
ence to the axis of rotation, and which do not vanish at the
surface of slip, the introduction of the motion excites magnetic
forces in the neighbourhood in accordance with equation (5,).
It is true that effects of this kind cannot be observed with the
same certainty as those first referred to; but there is at least
an indication of them in Professor Rontgen’s experiments.

In the general case in which there are charges of true
electricity and true magnetism at the surface of separation, a
knowledge of the surface-density of these is mnot by itself
sufticient for ascertaining the integrals of the equations (5,)

1 W. C. Rintgen, Wied. Ann. 35, p. 264, 1888.
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and (5,); beyond this it is necessary to know to what extent
the electricity and magnetism in the transition-layer share in
the motion of each of the two contiguous bodies. This
indeterminateness lies in the very nature of the matter.
Consider, for example, Rowland’s experiment on the effect of
the convective motion of electricity ; and suppose the electrified
disc to rotate within a solid insulator surrounding it closely,
instead of rotating in air. Clearly the magnetic effect would
diminish, even to the point of vanishing entirely, as the
electricity gradually escaped from the surface of the rotating
disc on to the contiguous surface of the body at rest.

6. Conservation of Energy— Ponderomotive Forces

We shall consider the transition of the system from the
initial to the final state during any element of time as being
split up into two stages. In the first stage we shall suppose
all the material parts to be transferred from their initial to their
final position, the lines of force simply following the motion of
the material parts. In the second stage we shall suppose that
the electric and magnetic forces, which by this time are
present, come into action, and in turn transfer the electro-
magnetic conditions into their final state. The variation which
the electromagnetic energy of the system experiences during
the whole period of transition is the sum of the variations
which it experiences during the two stages. The processes
which take place during the second stage are processes in
bodies at rest; we already know how the variations of the
electromagnetic energy during such processes are compen-
sated by other forms of energy. But during the first stage,
too, the electromagnetic energy of each material part of the
system alters; we have therefore to account for what becomes
of the electromagnetic energy thus diminished, or to find the
source of any increase. As far as all existing experience
extends, it can be proved beyond doubt that in every self-
contained electromagnetic system the amount of energy in
question is balanced by the mechanical work which is done by
the electric and magnetic ponderomotive forces of the system
during the element of time under consideration. But, never-
theless, taken as a statement of general applicability, this is
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not sufficient to enable us to deduce generally and rigidly the
ponderomotive forces from the calculable variations of the
electromagnetic energy. For this reason we introduce two
further assumptions which are not inconsistent with it; these
are not required by experience but by our own particular
views. The first assumption declares that the statement
already made—which experience proves to be correct for
every self-contained electromagnetic system—also holds good
for any material part of such a system. The second assumption
asserts that no part of the system can exert upon the rest of
the system any ponderomotive forces excepting pressures which
are exerted by the elements of the first part upon the contiguous
elements of the remaining part, and which at every point
of the surface of contact depend simply upon the electro-
magnetic conditions of the immediate neighbourhood. The
pressures required by the second assumption are determined
without ambiguity by the first assumption; we shall deduce
the magnitude of these pressures, and shall show that they are
sufficient to explain the facts which have been directly observed.
It then follows from the mode in which the pressures are
deduced that the principle of the conservation of energy is
satisfied in the case of moving bodies as well.

Consider during an element of time d¢ the magnetic energy
of a material particle, whose varying volume may be denoted
by d’, while dr denotes the value of d+’ at the beginning of
the time-element d¢. For the sake of simplicity let the origin
of our system of co-ordinates be placed permanently in a
material point of the space dr’.. If d7’ moved as a rigid body,
carrying its lines of force with it, the amount of energy con-
tained in it would not alter. In general, therefore, the variation
of this energy must be simply a function of the distortion
which d7’ experiences in consequence of the motion ; our
immediate problem is to represent the variation in this form.
Now it is not the polarisations alone which alter in consequence
of the distortions, but also the properties of the material
vehicles thereof, 4.c. the magnetic constants. For the pur-
pose of calculating this variation we need a further extension
of our notation. In the first place, and in addition to the

constants w, we define a series of constants u’ by the condition
that
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L4+ M 4+ 2N
= wy Lo + 2u, LM + ete.
= '€, 4 2u, £UT + ete.

These constants u’ are therefore the coefficients of £, 0T, 2
in the linear functions of these quantities by which the forces
are represented. We further denote by £ ¢ the displace-
ments which the point, whose velocities are a 3 vy, suffers from
its original position at the beginning of the time d¢. The
quantities

aE_ dg | dn

dz 7 dy + dz

— LYV 1
= z,, etc.,

are then the components of the distortions of the element dr’
in which the displacements £ ¢ occur. The constants u’ are
functions of these quantities; moreover, they depend upon the
rotations p, o, = which the element experiences during the dis-
tortion. During the element of time d¢ both z, x,, etc., and
p, o, T remain vanishingly small; hence the dependence is
linear and is known to us, provided we are given the differential
coefficients of u’ with respect to p, o, 7, @, x, etc. The
differential coefficients with respect to p, o,  can be calculated
from the instantaneous values of u’ itself. But this is not
possible for the differential coefficients with respect to z,, z,,
etc., and we must therefore assume that we are otherwise given
the quantities

/ /
dpyy = dpy = ! ote
> = ,, ete.
(lﬁ?x 11 1D (ny 115 12 ’

’ /
Ay ’ dpy ’

= P12 11 —— = g 12, €tC. etc.

dz, dz,

The 36 constants so defined clearly correspond to the
magnetic properties of the particular substance which fills the
space dr in its instantaneous state of deformation. For our
purpose we cannot dispense with a single one of these constants;
nor can we & priori deduce a single one of them from the
magnetic properties of the substance which we have hitherto
considered. By a suitable orientation of our system of co-

1 Cf. G. Kirchhoff, Mechanik, p. 123, 1877.
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ordinates we can reduce the number of necessary constants ;
similarly a reduction takes place when there happen to be
symmetrical relations with respect to the system of co-ordinates
used. In the simplest case, in which the substance is not only
isotropic in its initial state, but also remains isotropic in
spite of every deformation that arises—viz. in a fluid —the
number of the new constants reduces to a single one, which
then, together with the one magnetic permeability, sufficiently
defines the magnetic properties. Besides, it does not seem
improbable that even in the general case necessary relations
may be proved to exist between the constants which would
then reduce to a smaller number of independent constants.
This notation being now assumed, we obtain successively
the following expressions for the variation per unit time of
the amount of magnetic energy contained in the space dr/:—
@{_1(@ + M + zzN)dT'}
dt\ 8w
1

= —{d'r‘—l—(pu"f? + 24,/ EUT + etc.)
8m\| dt

d }
SL+OM 40N dr’
+(¢L+ + >lt Tf

1 d€ A0l __dn
= —ar o (1%t L B T
- T{ ( a T at dt)

By oo Ay
e L o2 ey L o )
+ < a - T et

+/da dB d«y)]
+(£L+mM+nm>(@+@+£ i
From the last of these we proceed to remove the dif-
ferential coefficients with respect to £ We obtain the
following expressions for d€/dt, d0/dt, dT/dt from equations
(1,) by considering only the influence of the motion in them,
and putting the velocities a, B, v, with due regard to the special
choice of our co-ordinate system, equal to zero—

(6).

\

ds ag . dy da da
— =— (3 Q-+ 0=
dt <dg/ +dz> T dg/+ dz’
aqt dy  da aB  dB
= —m(T 4% n@8, 78
dt dz +dx> + az + dx

ax _ _n<da, d3> Ty

ar T dy/ " dr T T dy
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For the magnitude du,,’/d¢ we further have

d,“u, dpy dz, d,“u dx,

VL "y 4 ete.
 dn, @t T, @

’
+d'”’11 - (Eg+etc.
dp dt

da d d
= #11’11 I + I"u, 12 ( da, + d’i) + ete.
d,u'n <d')’ @) ete.
dp dy dz

We deduce similar expressions for du,,’/d¢t, etec. We in-
troduce all these expressions in the right-hand side of
equation (6), and this side now becomes a homogeneous
linear function of the nine differential coefficients of a B¢
with respect to zyz But we can and will arrange this
function so that it shall appear to us as a homogeneous
linear function of the six rates of deformation da/dz,
da/dy y+dB[dx, etc., and of the three rates of rotation
L(da/dy —dpB/dx), etc. ~We here note that the coefficients of
the three rates of rotation must necessarily vanish identically ;
for a motion of a particle as a rigid body does not bring about
any alteration in the amount of energy contained in it.
Accordingly, we simply reject the terms in which these rates
of rotation occur, and thus obtain as our final result, after
reducing to the unit of volume by dividing by dr—

f 1d
L1afl g nN)d
det{Sw( + UM -+ T }
L de o M — BN 4 1€ 20 0T + et
8mdx
OB ST, MM — BN 4 ) 3+ 2pirs 2T+ etc)
87r0lJ
; dZ(-—-iL YOM + BN + oy 5552 + 2pins 5o E 00+ etc.)
7T
s L (48 dvy>( M 4+ UIN 4y €+ 21y s E AT+ ete.)
8w \dz dJ

87r<dm d/,>

87r<d7/ dz

QL+ pyy 15€° + 212 15T + ete.)

)( ML+ My o€ + 2 ST+ ete)
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Now it is clear that in the linear function of the rates of
distortion on the right hand the coefficient, taken negatively,
of each of these rates, gives that pressure-component with
which the magnetically strained matter tends to increase the
corresponding distortion. For let us, in accordance with the
usual ! notation, denote by X,X,X, the components of the
pressure which the matter of the element dr exerts upon a
plane section perpendicular to the z-axis ; and let us further
extend this notation to the directions of the other axes.
Then the expression

da ag dry
—+Y, E+Z !
daz + Ydy + “dz

+Y(Z§+%’) +‘<(%+Z—:> +Xy(g—§+§—f)

X,

represents the mechanical work, per unit volume and per unit
time, done by the material contents of the element dr in the
distortion which takes place. According to our assumption
this mechanical work is equal to the magnetic energy which
is lost as a result of the distortion. Inasmuch as this holds
for every possible deformation our assertion is shown to be
correct. Each of the pressure-components obtained is a
homogeneous quadratic function of the three components of
the prevailing magnetic force or, similarly, of the three com-
ponents of the prevailing magnetic polarisation. By exactly
analogous considerations we can deduce exactly analogous
expressions for the pressures which arise through electric
stresses. The total pressure is equal to the sum of the
magnetic and electric pressures.

Having now found the values of the ponderomotive pressures,
we add three remarks. The first remark has reference to the
difference between our system of pressures and the system
which Maxwell has given for the general case in which the
forces and the polarisations have different directions.? In the
first place, Maxwell’s formulz are simpler, because in deducing
them he paid no heed to the possible deformation of the
medium. A much more important difference consists in the
fact that the force-components which, according to the notation

! G. Kirchhoff (Mechanik, Eleventh Lecture).
* Maxwell, Treatisc on Elect. and Mayg., 2, p. 254, 1873,
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used, are denoted by X, and Y, have different values in
Maxwell, whereas with us they are identical. According to
our system each material particle, when left to itself, simply
changes its form ; according to Maxwell’s system it would at
the same time begin to rotate as a whole. Hence Maxwell’s
pressures cannot owe their origin to processes in the interior
of the element; and they therefore find no place in the theory
here worked out. At the same time they are permissible, if
one starts with the assumption that in the interior of the
moving body the ether remains permanently at rest and
provides the necessary point of support for the rotation which
takes place.

The second remark has reference to the manner in which
our formule become simplified when we apply them to bodies
which are isotropic, and which, in spite of every deformation,
remain isotropic—viz. to fluids. The system of constants
@' here reduces to the one constant p’'=1/p. If we further
denote by o the density of the fluid, we have

#12,’ 11— etC. = O.

Thus the pressure-components are—
(

Xa;= /f(_L2+M2 + NQ)_ __d_i"'__(L2+M2+N2),
8 87rd log o
(6,)4Y, = L( T2 ME4NY— (124 M4 NY),
87 8md log o
Z,= é/i( L? 4+ M?—N?%) — 8_—_—(1”' (L% 4+ M2 4+ N?),
{ T md log o
X,= -*IM, X,=-#£NL, VY=—-fMN
4qr 4 4

For the same case quite identical formule have already
been obtained by von Helmholtz® by following a similar train
of thought. Our formule merge into his if we alter the nota-
tion so as to replace L, M, N and p by A/3, p/3, v/, and

1 v, Helmholtz, Wied. Ann., 13, p. 400, 1881.



