XIII

ON THE FUNDAMENTAL EQUATIONS OF ELECTRO-
MAGNETICS FOR BODIES AT REST

(Gottinger Nachr. March 19, 1890 ; Wiedemann’s Ann. 40, p. 577)

THE system of ideas and formule by which Maxwell repre-
sented electromagnetic phenomena is in its possible develop-
ments richer and more comprehensive than any other of the
systems which have been devised for the same purpose. It is
certainly desirable that a system which is so perfect, as far as
its contents are concerned, should also be perfected as far as
possible in regard toits form. The system should beso constructed
as to allow its logical foundations to be easily recognised; all
unessential ideas should be removed from it, and the relations
of the essential ideas should be reduced to their simplest form.
In this respect Maxwell’'s own representation does not indicate
the highest attainable goal; it frequently wavers between the
conceptions which Maxwell found in existence, and those at
which he arrived. = Maxwell starts with the assumption of
direct actions-at-a-distance; he investigates the laws according
to which hypothetical. polarisations of the dielectric ether
vary under the influence of such distance-forces; and he ends
by asserting that these polarisations do really vary thus, but
without being actually caused to do so by distance-forces.!
This procedure leaves behind it the unsatisfactory feeling that
there must be something wrong about either the final result or
the way which led to it. Another effect of this procedure is
that in the formule there are retained a number of superfluous,

1 The same remark applies to v. Helmholtz’s paper in vol. 72 of Crelle’s
Journal,—not, indeed, throughout, but as far as relates to the special values of
the constants, which allow the distance-forces to vanish from the final results,
and which, therefore, lead to the theory here supported.
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and In a sense rudimentary, ideas which only possessed their
proper significance in the older theory of direct action-at-a-
distance. Among such rudimentary ideas of a physical nature
I may mention that of dielectric displacement in free ether, as
distinguished from the electric force which produces it and the
relation between the two—the specific inductive capacity of
the ether. These distinctions have a meaning so long as we can
remove the ether from a space and yet allow the torce to persist
in it. This was conceivable, according to the conception from
which Maxwell started ; it is not conceivable, according to the
conception to which we have been led by his researches. As a
rudimentary idea of a mathematical nature I may mention the
predominance of the vector-potential in the fundamental equa-
tions. In the construction of the new theory the potential served
as a scaffolding; by its introduction the distance-forces which
appeared discontinuously at particular points were replaced by
magnitudes which at every point in space were determined only
by the conditions at the neighbouring points. But after we
have learnt to regard the forces themselves as magnitudes of
the latter kind, there is no object in replacing them by poten-
tials unless a mathematical advantage is thereby gained. And
1t does not appear to me that any such advantage is attained
by the introduction of the vector-potential in the fundamental
equations ; furthermore, one would expect to find in these
equations relations between the physical magnitudes which are
actually observed, and not between magnitudes which serve
for calculation only.

Again, the incompleteness of form referred to renders it
more difficult to apply Maxwell’s theory to special cases. In
connection with such applications I have been led to endeavour
for some time past to sift Maxwell's formule and to separate
their essential significance from the particular form in which
they first happened to appear. The results at which I have
arrived are set forth in the present paper. Mr. Oliver
Heaviside has been working in the same direction ever since
1885.. From Maxwell’s equations he removes the same sym-
bols as myself; and the simplest form which these equations

! These equations will be found in the Phril. Mag. for February 1888.
Reference is there made to earlier papers in the Electrician for 1885, but this
source was not accessible to me.
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thereby attain is essentially the same as that at which I arrive.
In this respect, then, Mr. Heaviside has the priority. Never-
theless, I hope that the following representation will not be
deemed superfluous. It does not claim to set forth matters in
a final form ; but only in such a manner as to admit of further
improvements more easily than has hitherto been possible.

I divide the subject into two parts. In the first part (A)
I give the fundamental ideas and the formule by which they
are connected. Explanations will be added to the formule;
but these explanations are not to be regarded as proofs of the
formulee. The statements will rather be given as facts derived
from experience; and experience must be regarded as their
proof. It is true, meanwhile, that each separate formula
cannot be specially tested by experience, but only the system
as a whole. But practically the same holds good for the system
of equations of ordinary dynamics.

In the second part (B) I state in what manner the facts
which are directly observed can be systematically deduced
from the formule ; and, hence, by what experiences the correct-
ness of the system can be proved. A complete treatment of
this part would naturally assume very large dimensions, and
therefore mere indications must here suffice.

A. THE FUNDAMENTAL IDEAS AND THEIR CONNECTION

1. Electric and Magnetic Force

Starting from rest, the interior of all bodies, including the
free ether, can experience disturbances which we denote as
electrical, and others which we denote as magnetic. The
nature of these changes of state we do not know, but only the
phenomena which their presence causes. Regarding these
latter as known we can, with their aid, determine the
geometrical relations of the changes of state themselves. The
disturbances of the electric and the magnetic kind are so
connected with one another that disturbances of the one kind
can continuously exist independently of those of the other kind ;
but that, on the other hand, it is not possible for disturbances
of either of the two kinds to experience temporary fluctuations
without exciting simultaneously disturbances of the other kind.
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The production of the change of state necessitates an expen-
diture of energy; this energy is again released when the
disturbance disappears; hence the presence of the disturbance
represents a stock of energy. At any given point the changes
of state of either kind can be distinguished as to direction,
sense, and magnitude. For the determination, therefore, of the
electrical as well as of the magnetic state, it is necessary to
specify a directed magnitude or the three components thereof.
But it is an essential and important hypothesis of our present
theory that the specification of a single directed magnitude
is sufficient to determine completely the change of state
under consideration. Certain phenomena, eg. those of per-
manent magnetism, dispersion, etc., are not intelligible from
this standpoint; they require that the electric or magnetic
conditions of any point should be represented by more than
one variable!  For this very reason such phenomena are
excluded from our considerations in their present state.

That directed magnitude by means of which we first deter-
mine the electrical state, we call the electric force. The pheno-
menon by which we define the electric force is the mechanical
force which a certain electrified body experiences in empty
space under electrical stress. That is to say, for empty space
we make the component of the electric force in any given
direction proportional to the component of this mechanical
force in the same direction. By electric force at a point in a
ponderable body we understand the electric force at this point
inside an infinitely small cylindrical space, infinitely narrow as
compared with its length, bored out of the body in such a way
that its direction coincides with that of the force—a require-
ment which, as experience shows, can always be satisfied. And
whatever may be the relation between the force so measured
and the actual change of state of the body, it certainly must,
in accordance with our hypothesis, determine the change of
state without ambiguity. If we everywhere replace the word
“electric ” by the word “ magnetic,” and the electrified test-
body by the pole of a magnetic needle, we obtain the definition
of magnetic force. In order to settle the sense of both forces
in the conventional manner, let us further stipulate that the
electrified test-body is charged with vitreous electricity, and

1 [See Note 29 at end of book.]
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that the pole of the magnetic needle used is the one which
points towards the north. The units of the forces are still
reserved. The components of the electric force in the directions
z, 1, %, we shall denote as X, Y, Z, and the corresponding
components of the magnetic force as L, M, N.

2. The Enerqy of the Field

The stock of electrical energy in a portion of a body,
within which the electric force has a constant value, is a
homogeneous quadratic function of the three components of
the electric force. The corresponding statement holds good for
the supply of magnetic energy. The total supply of energy
we shall denote as the electromagnetic; it is the sum of the
electrical and the magnetic.

According to this, the amount of energy of either kind per
unit volume is for an isotropic body equal to the product of the
square of the total force under consideration and a constant.
The magnitude of the latter may be different for the electric
and the magnetic energy; it depends upon the material of the
body and the choice of the units for energy and for the forces.
We shall measure the energy in absolute Gauss’s measure ; and
shall now fix the units of the forces by stipulating that in free
ether the value of the constants shall be equal to 1/8m, so
that the energy of unit volume of the stressed ether will be

1 1
. 2 72 2 P 2 2 J 2
o (X T2+ 2 4 g (12 4+ M2+ ),

When the forces are measured in this manner, we say that
they are measured in absolute Gauss’s units.! The dimensions
of the electric force become the same as those of the magnetic
force. Both are such that their square has the dimensions of
energy per unit volume; or, expressed in the usual notation,
the dimensions of both are M':L—""T,

For every isotropic ponderable body we can now, in accord-
ance with what has been stated, put the energy per unit
volume as equal to

_e_ 2 2 2 i 2 2 2
(XY + 2+ g (L2 M+ N,

1 See H. Helmholtz, Wied. Ann. 17, p. 42, 1882.
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The new constants (e and u) here introduced are necessarily
positive, and are simply numbers. We shall call e the specific
inductive capacity (Dielektricititsconstante) and 4 the mag-
netic permeability (Magnetisirungsconstante) of the substance.
Clearly ¢ and u are numerical ratios, by means of which we
compare the energy of one material with the energy of another
material. A definite value of either does not follow simply
from the nature of a single substance itself. This is what we
mean when we say that the specific inductive capacity and the
magnetic permeability are not intrinsic constants of a substance.
There is nothing wrong in saying that these constants are
equal to unity for the ether; but this does not state any fact
derived from experience ; it is only an arbitrary stipulation on
our part.

For crystalline bodies the energy per unit of volume will
be equal to

1
E;(euX2 + e, Y2+ 6,27+ 2¢ XY + 2¢,,YZ 4 2 €., XZ)
1
+ gz_(,uuL2 + o, M2 + o, N2+ 2 LM + 2 posMN + 24 LN).

By a suitable choice of axes either the one part or the other
of this expression can be transformed into a sum of three
squares. It is even probable that the same choice of axes
would thus transform both parts. The e and x must be such
that in the transformation into a sum of squares all the co-
efficients would become positive.

3. Connection of the Forces in the Ether

We assume that the system of co-ordinates is such that
the direction of positive x is straight out in front of us, the
direction of positive z upwards, and that y increases from left
to right.! Assuming this, the electric and magnetic forces in
the ether are connected with each other according to the
following equations :—

! Unfortunately for the English reader this is not the system employed by
Maxwell, but the symmetric one. Hence follow some differences from Maxwell’s
formule as to the signs + and ~. The system is that which is employed in
v. Helmholtz’s papers.
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in addition to which we have the equations (which are not
inconsistent with the above)—

dL dM dN 0 dX dY dZ

(30) @4‘ %—I-@-Fﬁz—o

@ + T
as a supplement distinguishing the ether from ponderable
matter.

After these equations are once found, it no longer appears
expedient to deduce them (in accordance with the historical
course) from conjectures as to the electric and magnetic con-
stitution of the ether and the nature of the acting forces,—all
these things being entirely unknown. Rather is it expedient
to start from these equations in search of such further conjec-
tures respecting the constitution of the ether.

Since the dimensions of X, Y, Z, and of L, M, N are the
same, the constant A must be the reciprocal of a velocity. It
is in reality an intrinsic constant of the ether; in saying this
we assert that its magnitude is independent of the presence of
any other body, or of any arbitrary stipulations on our part.

We multiply all our equations by (1/4wA).dr; further
multiply the members of the series separately by L, M, N, X, Y, Z
respectively, and add all together. We integrate both sides of
the resulting equation over any definite space, of which the
element of surface dw makes, with the co-ordinate axes, the
angle nz, ny, nz. The integration can be carried out on the
right-hand side of the equation, and we get—

a [
dt
1 >
= 4;11/{ (NY — MZ) cos n,z+ (LZ—NX) cos n,
+ (MX —LY) cos nz}dw.

1 1
{g;r(X2+Y2+Z2)+é—7r(L2+M2+N‘~’) }d—r
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The integral on the left-hand side is the electromagnetic
energy of the space; the equation, therefore, gives us the
variation of this energy, expressed in magnitudes which relate
only to the bounding surface of the space.

4. Isotropic Non-Conductors

In homogeneous isotropic non-conductors the phenomena
are qualitatively identical with those in free ether. Quantita-
tively they differ in two respects: in the first place, the
intrinsic constant has a value different from what it has in the
ether; and in the second place, the expression for the energy
per unit volume contains, as already explained, the constants
€ and u. The following equations represent these statements,
and are in accord with experience :—

(. AL dZ dY (. dX dM dN
AF’ - - ) AG— =——,

dt  dy dz dt  dz dy

dM dX dZ dY dN dL
G =~ ol A=~ &
dN dY dX AdZ _dL dM

{ ar & dy’ L “dr dy — dx

For if, for a moment, we determine the measure of the
forces in the non-conductor as we have previously done in the

ether, and accordingly replace X, Y, Z by X/ /e, Y/ /e,
Z/Ne, and L, M, N by L/a/u, M//u, N/u/p; then the
equations assume exactly the form of the equations for the
ether—with this single difference, that the magnitude A is

replaced by the magnitude A / en.  If we retain, on the other
side, our measure of the forces, we can consistently assign to
the energy the requisite value. For by carrying out the same
operations which we employed in the preceding section, we
get—

d € s ~

21 ) £ ixe 24 72y e 2 2

7 {SW(X +Y +Z)+87r(L +M +N)}d'r
1

=1 f ((NY — MZ) cos nz + (LZ — NX) cos ny

+ (MX - LY) cos nz}dw.
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The general statements by which we have been guided to
equations (4) no longer hold good when the non-conductor is
not homogeneous. The question therefore arises—Do our
equations hold good in this case? Experience answers this
question in the affirmative; we may therefore regard the

magnitudes ¢ and u in equations (4,) and (4,) as variable from
point to point.

5. Crystalline Non-Conductors

We can obtain a representation of the processes that take
place in such bodies—whose structure differs in different
directions, but whose electromagnetic properties merge into
those of isotropic non-conductors as the eolotropy disappears
—by regarding the time-variations of the forces on the left
hand of our equations as perfectly general linear functions of
the space-variations of the forces of the opposite kind on the
right hand. The generality of form of these linear functions
and the choice of their constants is, however, restricted by
assuming that the same operation which has already furnished
us with an equation for the variation of energy will always
do so, and by stipulating that the energy shall thereby be ex-
pressed in the form already established. By these considerations
we are led to the following equations, which, in fact, suffice for
the representation of the most important phenomena :—

o, W aM @> a7 dY

(" ngy The g Ty ) S0 T

) dL dM  dN\ dX dZ
Gy Al g+ gt ) = 3~ g
dL dM  dNy dY dX
Ak g T g i ) = gy
aX, Ay dzy _dM_dN
*(Gn gt T dt +e dt> T de dy’

dX dZ\ dN dL
(5v) A<€1 o +€°" dt e dt> = T Az
(zx dY dZ~ dL dM

{<e* ar T gp T dt>_@_T
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The equation for the variation of the energy of a space
gives the same result as in sections (3) and (4). Experience
also shows that it is not necessary to regard the e and w in the
equations of the present section as being constant throughout
the space; they may be magnitudes varying in any way from
point to point.

6. Distribution of the Forces in Conductors

In the bodies hitherto considered, every variation of the
electric force appears as the consequence of the presence of mag-
netic forces. If within a finite region the magnetic forces are
equal to zero, every cause for such a variation is wanting ; and
any existing distribution of electric force remains permanently,
s0 long as it is left to itself and no disturbance reaches the
interior from beyond the limits of the region. The electric
forces do not behave thus in all bodies. In many bodies an
electric force when left to itself vanishes more or less rapidly
away; in such bodies magnetic forces or other causes are
necessary in order to restrain an existing distribution from
change. For reasons which will appear later, we call such
bodies conductors. The simplest assumptions which we can
make with respect to them are these: In the first place,
that the loss per unit time experienced by an electric
force when left to itself is proportional to the force itself ;
and, in the second place, that independently of this loss the
magnetic forces here tend to produce the same variations as in
the bodies hitherto considered. If we introduce a new constant
A, the first assumption allows us to assert that the force-com-
ponent X when left to itself will vary in accordance with the
equation—

Ae X = —4mAAX.
dt

This first assumption is supplemented by the second as
follows :—When magnetic forces are present, the variation will
take place in accordance with the equation

. edX dM AN

A e —— — :
. dz dy dmAAX

The constant A is called the specific conductivity of the body,
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measured electrostatically. Its dimension is the reciprocal of a
time. Hence the magnitude e, 47\ is a time ; it is the time in
which the force when left to itself sinks to 1/e¢ of its initial
value—the so-called time of relaxation. Hr. E. Cohn first
observed and drew attention to the fact?! that it is this latter
time, and not A itself, that is a second intrinsic constant of the
body under consideration; one that can be settled without
ambiguity and independently of any second medium.

These considerations lead us now, conjecturally, to the
following equations which are in accordance with experience :—

dL  dZ dY dX dM dN

Ae =TT
Apr dt  dy dz’ “at T as dy AmAAX,
dM  dX dZ dY dN dL
| e IR o ———— A — —
G =g = (DA€ g = g g, TAmMAY,
o dY dx £ 0% _ dz_aM
Pl = de  dy U Ty T aw ATMAL

Clearly these equations refer only to isotropic media ; it is,
however, unnecessary, as far as the hypotheses hitherto made are
concerned, that the bodies should be homogeneous as well. But
in order to represent accurately the actual distribution of
the forces in a non-homogeneous body, our equations still need
to be supplemented to a certain extent. For if the constitution
of a body varies from point to point, the electric force when
left to itself does not in general sink completely to zero, but it
assumes a certain final value which is not zero. This value,
whose components may be X’ Y’ Z/, we call the electromotive
force acting at the point in question. We regard this as
being independent of time; in general it is greater, the greater
the variation of the chemical nature of the body per unit of
length. We take into account the action of the electromotive
force as follows :—Instead of making the diminution of the
electric force when left to itself proportional to its absolute
value, we make it proportional to the difference which remains
between this absolute value and the final value. In the case,
then, of conductors whose structure admits of the productlon of
electromotive forces, our equations become—

1 With respect to this, and the manner in which the magnitude X\ is here
introduced, cf. E. Cohn, Berl. Ber. 26, p. 405, 1889.
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dL  dZ dY (, dX dM dN
=———, Ae— =~ - _ - X’
dt  dy dz “at T @ dy AmAARX =X,
dM  dX dZ (ZY dN dL
SAp- =T 3 — -Y’
(6c)7 44 it~ & (B0 A dt ~ dv de LAY — Y,
AN _ Y X AL _ L _aM AmNA(Z—Z)).
A T ae dy o de dy  dz

7. Eolotropic Conductors

If the conductor behaves differently in different directions,
we can no longer assume that the diminution in each com-
ponent of the force when left to itself depends only upon this
same component; we must rather suppose that it is a linear
function of the three components. If we further assume that
when the conductivity vanishes, the equations reduce to those
of an eolotropic non-conductor, we arrive at the following
system :—

IM  aNN\  dZ dY
Fu gy Th g i, (lt>

< - dy — dz’
dL dM N dX dX
(72)4 A("' T gy dt> e d
dL dM dN dY dX
\A<'u' dt THxs dt +”337lt>=%—@,
dX dZ dM N
A<€1 at T e lt + Gl"?t) T dr T dy
—4wA{X11(X XN+ (Y— —Y)+r (Z— Z’)}
dZ\ dN dL
(7o) A<e12 dt €22 dt + €23 ;Zt> T dr T de
— 47rA{ 21(X X)+2,(Y =Y +1,,(Z =71,
dZ~ dL dM
A<613 a T s dt P+ 5 qt ) T dy dz
—4m AN (X =X+ 0, (Y =Y) + 2 (Z=2Z)].

It is highly probable that for all actual bodies A, =2,
A, =M A=A, We may regard the constants €, u, A in the
equatlons ot this section again as varying in value from place

to place.
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8. Limiting Conditions

It is easily seen that the equations (7,) and (7,) include all
the earlier ones as particular cases ; and that even the equations
for the free ether can be deduced from them by a suitable dis-
position of the constants. Now since these constants may be
functions of the space, we are led to regard the surface of
separation of two heterogeneous bodies as a transition-layer, in
which the constants certainly pass with extraordinary rapidity
from one value to another, but in which this still happens in
such a way that even in the layer itself the above equations
always hold good, and express finite relations between the finite
values of the constants and the forces which also remain finite.
In order to deduce the limiting conditions from this hypothesis,
which is in accordance with experience, let us for the sake of
simplicity suppose that the element of the surface of separation
under consideration coincides with the zy-plane.

Disregarding for the moment the appearance of electro-
motive forces between the bodies in contact, we find, on
examining the first two of the equations (7,) and (7,), that the
magnitudes

dX dY dM dL

dz’ E’ dz’ dz

must, in consequence of our hypothesis, remain finite in the
transition-layer as well. Thus, if the index 1 refers to the one
side of the limiting layer, and the index 2 to the other side,
we must have
Y,—-Y =0, M,—-M, =0,
(S)X \ 0. (Sb)L L—O

The components of the force which are tangential to the
limiting surface therefore continue through it without discon-
tinuity. Applying this to the third of the equations (7,) and
(7,), we further find that the expressions

dL dM dN
Fisqr + Fos™qr + Ky it
dX dY dZ
€371 + €y dt + €5 dt

and

+ 47(A, X + 0, Y + 0, 7)
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must have the same value on both sides of the limiting layer.
This statement, which expresses the reciprocal dependence of
the normal components of the forces on both sides of the limiting
surface, assumes in the case of isotropic bodies the simple form

dN,  aN,

(8(,) MIW— M E‘=O7
. dZ dZz.
(S4) € 7; — €, (_lt_z_ = —4r(MZ —N\,2Z).

In the next place, if we do not exclude the appearance of
electromotive forces in the limiting layer, we have to observe
that, in accordance with experience, the component of these
forces which is normal to the limiting surface, i.e. Z', becomes
infinite in the transition-layer itself; and yet in such a way
that the integral /Z’dz taken through the limiting surface retains
a finite value; this value we can obtain from experiments,
although these leave us in the dark as to the course of Z’ itself.
We now satisfy the hypothesis of the present section by
assuming that, with I, M, N, X, Y, the magnitude Z—Z’
remains finite in the transition-layer. Z becomes infinite
there; nevertheless, we can allow dZ/dt to remain finite.
Furthermore, we put

(88> dez =_fZ’d2 > ¢1’2 ’

Let us now integrate the first two of the equations (7,) and
(7p) after multiplying by de through the transition-layer. Since,
on account of the shortness of the path, the integral of every
finite magnitude vanishes, we obtain the conditions—

d
[n—z=§% M,~ M, =0,
(81") ) d¢ (8g)
lXﬂ_Xl: "E[;;Q; NQ—N]_:O.

Applying these to the third of the equations (7,) and
(7v), we obtain as the conditions for the normal-forces, that
on both sides of the limiting surface, the values of the
expressions
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dL iM  dN
g gp T g Tl gy

dX dY dz ,
€ g+ € Ty g T+ dmin,(X—X")

23 dt
+ 2, (Y — YY)+ A (Z— 7z}

must be equal. If the bodies on both sides of the limiting
surface are homogeneous, then the presence of the electro-
motive forces has no effect upon the conditions by which the
forces existing on the two sides are connected.

~ Our limiting conditions are nothing else than the general
equations (7,) and (7,), transformed to suit special circum-
stances. We may, therefore, imagine every statement and every
operation relating to these general equations within a definite
region to be at once extended to the limits of heterogeneous bodies
within the region; provided always that this procedure does
not land us in mathematical impossibilities, and therefore that
our statements and operations, either directly or after suitable
transformation, do not cease to be finite and definite. We
shall often avail ourselves of the convenience which arises
from this. And if, in general, we dispense with proving
that all the expressions which arise are finite and definite,
it must not be supposed that this is because we regard such
proof as superfluous, but only because the proof has long
since been furnished, or can be supplied according to known
examples, in all the cases which have to be considered.

Each one of the previous sections means an increase in
the number of facts embraced by the theory. The following
sections, on the other hand, deal only with names and notations.
As their introduction does not increase the number of facts
embraced, they are merely accessory to the theory; their
value consists partly in making possible a more concise mode
of expression, and partly also in simply bringing our theory
into its proper relation towards the older views as to electrical

theory.
P
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9. Electric and Magnetic Polarisation

So far as our equations relate to isotropic media, each
separate one gives the value which a single one of the physical
magnitudes under consideration will have at the next moment,
expressed as a definite function of the conditions existing at
the present moment. This form of the equations is very
perfect from a mathematical point of view, for it enables us
to ascertain from the outset that the equations determine with-
out ambiguity the course of any process whatever that may
be arbitrarily excited. It also appears very perfect from a
much more philosophic standpoint; for it enables us to recog-
nise on the left-hand side of the equation the future state—
the consequence—while, at the same time, on the right-hand
side of the equation, it exhibits the present state—the cause
thereof.  But those of our equations which relate to eolotropic
bodies have not this perfect form; for, on the left-hand side,
they do not contain the variations of a single physical magni-
tude, but functions of such variations. Since these functions
are linear, the equations can certainly be thrown into the
desired form by solving them for the separate variations.
Another means to the same end—which, at the same time,
simplifies the equations—is by introducing the magnitudes
which we call polarisations. We put '

£ =p,L+p,M+ PN, ( X=¢,X+e,Y+ A
(9:) {ut= L+ pos M + MosN,  (99) ‘l N=¢,X+ €Y + €7,
u= /“’131‘ + "”23M +p, N S=¢€,X+ 623Y + €2

and call the resultant of €, 217, Xt the magnetic, and the
resultant of X, 1), 3 the electric polarisation. For isotropic
bodies the polarisations and the forces have the same direc-
tion, and the ratio of the former to the latter is the specific
inductive capacity or the magnetic permeability. In the case
of the ether polarisations and forces coincide. If we introduce
the polarisations on the left-hand side of our equations, then
each equation gives us the variation of a single polarisation-
component as the result of the forces instantaneously present.
Since the forces are linear functions of the polarisation, there
is no difficulty in introducing the polarisations on the right-
hand side of the equations as well We should thus have
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replaced the particular directed magnitude—the force—which
we first used to determine the electromagnetic state, by
another directed magnitude—the polarisation—which would
serve our purpose as well, but not any better. The introduc-
tion of the polarisations and the forces side by side considerably
simplifies the equations; and this is our first indication that, in
order to represent completely the conditions in ponderable
bodies, it is necessary to specify at least two directed magni-
tudes for the electrical condition and two for the magnetic
condition.
In order to simplify our equations further, let us put

u=r,X— X +r (Y -Y)+ A(Z =17,
(96){ v= A (X = X) + 0 (Y = Y) 42 (Z - Z)),
w=A (X =XV 42 (Y =Y+ A (Z = Z)).

For reasons which will appear in the next section, we call ,
v, w the components (measured electrostatically) of the electric
current-density.

Our most general equations now take the form

(L9 _dZ _aY (0% _aM _aN
@ dy  dz’ dt  dz dy o
anm dX  dZ ) dN dL
< —_— T ——— 9 < —_—— I e e —
(93) Adt dz dz’ ( b) Adt da dz 47TA’U,
an dy dX i3 dL dM
AW T T Ay AW T @y T A

and, on introducing the polarisations, the electromagnetic
energy per unit volume of any body whatever takes the form

1 1
(XX +0Y+3Z2)+ ;- (£L 4+ UM 4 XIN).
87 8

In these expressions there no longer appear any quantities
which refer to any particular body. The statement that these
equations must be satisfied at all points of infinite space,
embraces all problems of electromagnetism ; and the infinite
multiplicity of these problems only arises through the fact
that the constants e, u, A, X', Y/, Z’ of the linear relations
(9.), (94), (9,) may be functions of the space in a multiplicity
of ways, varying partly continuously, and partly discontinu-
ously, from point to point.
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10. Electricity and Magnetism

Let there be a system of ponderable bodies in which
electromagnetic processes take place, and which are separated
by empty space from other systems. Let us differentiate the
three equations (9,) with respect to z, , » respectively, and
add; we thus obtain for all points of the system the equation

(;zt <d3€ an d5)

du dv d w>
't ayt -

— 4 <~ w o
i dx+dy+dz

Let us multiply this equation by the volume-element dr, and
integrate over the volume up to any surface, completely
enclosing the ponderable system. Let dw be the element of
this surface, and let the normal to dew make with the axes the
angles nz, ny, nz Since u, v, w are zero at the surface, we
get ’

df(dx an dé)d £Z/3€ p
7 dx+?y+zz_ T=2 (Xcos nz + Neosny + Fcos nz)do

DAY dy " de)"7
= — 4m/(u cos nx + v cos n,y + w cos n2)dw = 0.

Hence, if ¢ denotes a quantity which is independent of time—

[Cat gy )

(10,) (
‘l = (X cos nx + 1 cos ny + 3 cos n2)dw = 4re.
The quantity ¢ is obviously a function of the electrical state
of the system—a function of such a kind that it cannot be
increased or diminished by any internal or external processes
of a purely electromagnetic nature. This indestructibility of
the quantity e—which also holds good for other than purely
electromagnetic processes, so long as these are restricted to the
interior of the system—has prompted the idea that e represents
the amount of some substance contained in the system. In
accordance with this idea we call ¢ the amount of electricity
contained in the ponderable system. But we must allow e to
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be positive or negative, whereas the amount of a substance is
necessarily positive. For this reason the hypothesis has been
supplemented by assuming the existence of two electricities of
opposite properties, and making ¢ mean the difference between
the two ; or else a way out of the difficulty has been sought
in assuming that e represents only the deviation of the amount
of electricity actually contained from the normal amount.
But if ¢ represents the quantity of a substance in one of these
forms or some other form, then each volume-element d+ must
furnish its definite share towards the total amount of e. Only
hypothetically can we distribute the volume-integral, which
supplies ¢, among the separate volume-elements. A possible
distribution—the first which suggests itself for the moment—
is that which assigns to the volume-element dr the quantity
of electricity—
1 /dx df) d3
P 't )i

We shall call the quantity of electricity thus determined the true
electricity of the volume-element; in the interior of a body,
in accordance with this, we shall call the expression

1 /dX dY) d3
oty )

the true volume-density, and at the surface of separation of
dissimilar bodies the expression

1 ld
4;{ (xz - 361) COs N,r + (DZ - I?l) cos 1,y + (52 — é)l) cos n,z}

the true surface-density of the electricity.

Another possible distribution of ¢ among the volume-
elements which suggests itself is that which we get through
observing that in empty space polarisations and forces are
identical, and that we can therefore write instead of (10,)—

dare = (X cos nx+ Y cos ny + Z cos nz)dw
(10y) ](dX A’ dZ)d
T’

— e

“Net ot E
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and furthermore, that we can regard the expression
1 (dX aY dZ )d
Ir\dr Tay v @)
as representing the share which the volume-element d+ con-

tributes to e.  Accordingly, we call the quantity of electricity
so determined the free electricity of the volume-element, and

1 (dX dY dZ )
4o \ da + dy + dz
the free volume-density, and at surfaces of separation—

1
L;{(X,_, — X)) cos n,z+ (Y, —Y,) cos n,y + (Z,—Z,) cos nz}

the free surface-density of the electricity. The difference
between the true and the free electricity we call the bound
electricity. ~ Our nomenclature follows the familiar nomen-
clature which takes its origin from the view hitherto held as
to the existence of electrical action-at-a-distance.! According
to this view, a part of the extraneous or “true” amount of
electricity introduced into a non-conductor remains “ bound ”
by electrical displacement 2 in the molecules of the surround-
ing medium; whereas the rest remains “free” to exert its
distance-action outwards. And yet in many respects our
nomenclature differs from the usual one. But since the latter
is sometimes ambiguous and not always consistent, it was not
possible for me to find a system of notation which would in
all cases harmonise with the common use of terms. The
common phraseology is also ambiguous in that it uses the
word electricity without further discrimination to denote some-
times the true, sometimes the free electricity ; and this even
when important statements are being made.

In accordance with what has been stated above, we denote
the integral

J(% cos nx+ 1) cos ny + & cos n2)dw,

extended over any closed surface and divided by 4=, as the

! [See Note 30 at end of book. ]

* This is not identical with our polarisations. [See the theoretical part of
the Introduction.]
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true electricity contained within this surface. The same in-
tegral extended over an unclosed surface we shall call the number
of electric lines of force traversing this surface in the direction
of the positive normal. By this notation we follow Faraday’s
conception, according to which the lines of force are lines which
in isotropic homogeneous bodies run everywhere in the
direction of the prevailing force, and the number of which is
proportional to the magnitude of the force. It is true that by
our notation we have rendered this conception more complete
or precise in this respect,—that in all bodies we make the lines
of force run everywhere in the direction of the polarisation, not
of the force, and that their density is in all cases proportional
to the magnitude of the polarisation, not of the force. It follows
from our definitions that the quantity of true electricity con-
tained in any space, multiplied by 4, is equal to the excess of
the number of lines of force which enter the surface over the
number which leave it. Every line of force which has an
end must accordingly end in true electricity ; and we may
define the true electricity as the free ends of the lines of force.
If a given space in the neighbourhood of the surface over which
our integral extends is free from true electricity, then the value
of the integral is independent of the particular position of the
surface within this space; it only depends upon the position of
the boundary of the surface. In this case, then, we denote
the value of the integral as being the number of lines of
force crossing the boundary line—any ambiguity remain-
ing in this expression being supposed removed by special
restrictions.

We shall next calculate the variation of the true electricity
¢, in a part of our system bounded in any way. Let dw again
be an element of the bounding surface of this part. We get

(lOc) i f,du @+——>d1— — J(ucosnyx + vcos nyy 4 weos n,z)dw.

Now if our bounding surface runs entirely in bodies for
which A is equal to zero, then %, v, w still vanish at the
surface, and hence the amount of true electricity contained in
the space bounded by it remains constant. Accordingly, true
electricity cannot by any purely electromagnetic process escape
from a space which is wholly bounded by bodies for which A is
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equal to zero. For this reason we call, and have called, such
bodies non-conductors. But if the bounding surface passes
wholly or partially through bodies for which A is not zero, it
becomes possible for the amount of electricity within the space
so bounded to vary through purely electrical disturbances ; for
this reason we call bodies of this latter kind conductors. This
division of bodies into conductors and non-conductors has
reference therefore to the true electricity ; with reference to the
free electricity all bodies may be regarded as conductors (cf.
displacement-currents). The amount of a substance within a
given space can only vary by its passing inwards or out-
wards through the surface; and it is clear that a definite
amount of the substance must pass through each element
of the surface. Consistently with the fact that the amount
of electricity given by our integral passes per unit time
through every closed surface, we may assume that the amount

U COS N + v COS MY + W COS n,2

paSses through unit surface of every surface-element. In
accordance with this assumption we call, and have called, u, v,
w the components of the electric current-density, and the integral

S cos nz+ v cos ny +w cos n,2)dw,

taken over an unclosed surface, the electric current flowing
through this surface. 'We must, however, lay stress upon this—
that even if we admit the materiality of electricity, the above
special determination of its flow in conductors embraces a further
hypothesis. Upon the system of disturbance found there can
be superposed an arbitrary- current-system, closed at every
moment, without thereby altering the increase or decrease of
electricity at any point.

If a portion of our system has attained its present condition,
starting from the unelectrified condition, by purely electro-
magnetic processes, or if by purely electromagnetic changes it
can return to the unelectrified state, then in all non-conductors
of this portion the true electricity is equal to zero. For such
portions we have, then, in addition to the general equations, the
following as limitations of the permissible initial conditions
which are not inconsistent with the general equations, viz, :—
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dX dY) d3
%4"@4—%—0

for the interior of non-conductors; and

(X,— X)) cos nx+({),—1,) cos ny + (F,— 3,) cos nz=0

for the boundary between two heterogeneous non-conductors.
The magnetic phenomena can be considered in a manner

exactly analogous to the electric phenomena. Let us proceed
to examine these, with the assistance of the equations (9,).
We shall call

1 /de AUt dW

4w<¢793 + dy +E>
the true volume-density for the interior of a body; the
expression—

1
'4’7;{(52— £) cos nz 4 (U1, — A1) cos ny + (W, — ;) cos n,z}

the true surface-density of magnetism at the surface of separa-
tion of two bodies; and the integral of these magnitudes
extended over a definite portion of space, the true magnetism
contained in this portion. The integral

NE cos nx+ U1 cos ny + W cos nz)dw,

taken over an unclosed surface, we shall call the number of
magnetic lines of force penetrating this surface, or the boundary
of this surface. Further, we shall call

1 dL  dM | aN
47r<d.7c+dy+dz)

the free volume-density for the interior of a body; and
1
47;{ (L,—1L,) cos nz+(M,—M,) cos n,y +(N,—N,) cos nz}

the free surface-density of the magnetism at the surface of
separation of two bodies. The distinction between conductors
and non-conductors here disappears; for the equations (9,)
contain no terms corresponding to the u, v, w of equations (9,).
With respect to true magnetism all bodies are non-conductors ;
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with respect to free magnetism all bodies may be regarded as
conductors.

Let us suppose that a system or a portion of it emerges
from the non-magnetic state through purely electromagnetic
processes, or can by such processes return to this state. For
such a system, or that portion of it, the following equations
obtain, viz.—

04 A4 ( QY A X ¢
in + LTy + P

for the interior of the bodies ; and
(£,—£)) cos nx+ @, — A1) cos n,y + (X, — R.) cos n,z = 0

for the surface of separation of heterogeneous bodies. These are
supplementary to the general equations as consistent stipula-
tions respecting the possible initial conditions.

11. Conservation of Energy

Let S denote the electromagnetic energy of a volume T,
which is bounded by the surface . We can calculate the
variation of S by multiplying all the equations (9.) and (9,) by
(1/4mwA)dr, then multiplying them separately in order by
L, M,N, X Y, Z adding all together, and integrating over the
volume 7. We obtain

asS 1
(11 ){dT; = ;;;Kf{ (NY —MZ) cos nz + (LZ — NX) cos n,y
+(MX —LY) cos nz}dw — f(uX + Y + wZ)dr.

If we extend the space T over a complete electromagnetic
system, v.e. as far as a surface at which the forces vanish, then

our equation becomes

)

dS
7ol S(uX +vY + wZ)dr.

The conservation of energy accordingly requires that in
every system which is not subjected to external actions, an
amount of energy corresponding to the integral on the right-
hand side should make its appearance per unit time in other
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than electromagnetic form. This requirement is satisfied by
experience, which further teaches us that each separate volume-
element dr furnishes towards the total amount of the trans-
formed energy the quantity

(uX +vY +wZ)dT,

and shows us in what form this energy makes its appearance.
Or rather, to speak accurately, experience does not show that
this is true in all cases, but provisionally in the following
special cases only. According to both theory and experience,
the amount of energy which appears per unit time and per unit
volume in the interior of a homogeneous isotropic conductor
takes the form
7\(X2+Y2+Z2)=)1:(u2+v2+w2).

It is always positive and represents a development of heat
—the Joule effect. At the boundary between two homogeneous
isotropic bodies, the amount of energy per unit volume that
appears in the transition-layer takes the form

uX 4+ oY +wZ;
hence, by integration over the whole thickness of the transition-

layer, it follows that the quantity of energy which appears per
unit of surface at the boundary amounts to

(4 cos n,z 4 v cos ny + w COS NR). ¢4,

which expression is also confirmed by experience. This
expression may be either positive or negative; it may corre-
spond either to an appearance or a disappearance of foreign
forms of energy. Either the transformed foreign energy is heat
in this case as well—the Peltier effect; in which case we
denote the effective electromotive forces as thermoelectric.
Or else chemical energy as well as heat is transformed; in
which case we denote the forces as electrochemical. Let us now
consider any limited portion of our system and calculate for it
the increase of its total energy, 7.e. of the quantity

ds
7T S(uX 4+ vY + wZ)dr.

In accordance with what has been stated, we find that this
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-~

increase is equal to an integral taken over the surface of the
space. The variation of the stock of energy in this (and there-
fore in any) space will therefore be correctly calculated if we
assume that the energy enters after the manner of a substance
through the surface, and in such quantity that through every
such surface the amount

1 |
i {(NY —MZ) cos npz+ (LZ—NX) cos ny
+ (MX — LY) cos nz)

enters per unit of surface. A geometrical discussion of this
expression shows that our assumption is identical with the
statement that the energy moves everywhere in a direction
perpendicular to the directions of the magnetic and electric
forces, and in such amount that in this direction a quantity
equal to the product of the two forces, the sine of the enclosed
angle, and the factor 1/4wA, passes through unit surface per
unit time. ' This is Dr. Poynting’s highly remarkable theory
on the transfer of energy in the electromagnetic field! In
examining its physical meaning we must not forget that our
analysis of the surface-integral into its elements was hypo-
thetical, and that the result thereof is not always probable.
If a magnet remains permanently at rest in presence of
an electrified body, then in accordance with this result the
energy of the neighbourhood must find itself in a state of
continuous motion, going on, of course, in closed paths. In the
present state of our knowledge respecting energy there appears
to me to be much doubt as to what significance can be attached
to its localisation and the following of it from point to
point.  Considerations of this kind have not yet been success-
fully applied to the simplest cases of transference of energy in
ordinary mechanics; and hence it is still an open question
whether, and to what extent, the conception of energy admits
of being treated in this manner.?

12. Ponderomotive Forces

The mechanical forces, which we perceive between ponder-
able bodies in the electromagnetically stressed field, we regard

1 J. H. Poynting, Phil. Trans. 2, p. 343, 1884.
2 [See Note 31 at end of book.]
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as the resultants of mechanical pressures which are excited by
the existence of electromagnetic stresses in the ether and in other
bodies. According to this view the mechanical forces which
act upon a ponderable body are completely determined by the
electromagnetic state of its immediate neighbourhood ; and it
need not be considered what causes at a distance may have led
up to this state. We further assume that the presupposed
pressures are of such a kind that they cannot give rise to any
resultants which would tend to set the interior of the ether
itself in motion. Without this hypothesis our system would
necessarily be incorrect, or at least incomplete; for without it
we could not in general speak at all of electromagnetic forces in
the ether at rest. It necessarily follows from this hypothesis that
the forces under observation, acting upon ponderable bodies,
must satisfy the principle of the equality of action and reaction.

The question now is—Whether pressures can be specified
answering these requirements, and capable of producing the
resultants which are actually observed ? Maxwell, and, in a
more general form, von Helmholtz have described forms of
pressures which satisfy all the requirements of statical and
stationary states. But these pressures, if assumed to obtain
for the general variable state, would set the ether itself in
motion. We therefore assume that the complete forms have
not been discovered, and, avoiding any definite statements as
to the magnitude of the pressures, we shall rather deduce the
ponderomotive forces with the aid of the hypotheses already
stated, of the principle of the conservation of energy, and of
the following fact derived from experience :—If the ponderable
bodies of an electrically or magnetically excited system, which
always remains indefinitely near to the statical condition, are
displaced with reference to one another, and if at the same
time the amount of true electricity and of true magnetism in
each element of the bodies remains invariable and behaves as
if attached to the element, then the mechanical work consumed
in the displacement of the bodies finds its only compensation
in the increase of the electromagnetic energy of the system,
and is therefore equal to this latter.!

It still remains an open question whether forms of pressure
can be specified which satisfy, generally and precisely, the

[! See Note 32 at end of book.]
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requirements which we have laid down. If this is not the
case, our body of hypotheses contains an intrinsic contradiction
which must be removed by correcting one or more of these
hypotheses. But at all events the necessary amendments are
of such a kind that their effect would not make itself felt in
any of the phenomena hitherto observed. And it must be
pointed out that if there is here something lacking in our
theory, it is not a defect in the foundations of the theory, but
in parts of the superstructure. For, from our point of view,
the mechanical forces excited are secondary consequences of
the electromagnetic forces. We could discuss the theory of
the latter without even mentioning the former; as indeed we
have excluded from the discussion all other phenomena of minor
importance which result from the electromagnetic state.

B. DEDUCTION OF THE PHENOMENA FROM THE FUNDAMENTAL
EQUATIONS

We divide the phenomena represented by our equations
into statical, stationary, and dynamical. In order that a pheno-
menon may rank as statical or stationary, it is necessary that
it should not determine any variations of the electric and
magnetic forces with time, s.e. that the left-hand sides of the
equations (9,) and (9,) should vanish. Furthermore, in order
that a phenomenon may rank as statical, it is also necessary
that it should not be accompanied by changes in time at all,
and hence, more especially, that it should not determine any
permanent change of energy into other forms. The sufficient
and necessary condition for this is that the quantities w, v, w
in equations (9,) and (9,) should also vanish.

Statical Phenomena

If in the equations (9,) and (9,) the left-hand sides and
also the quantities w, v, w vanish, the system splits up into
two mutually independent systems, of which one contains only
the electric forces and the other only the magnetic forces. We
thus get two groups of problems, of which one is called electro-
statics, and the other might be called magnetostatics.
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13. Electrostatics

In this section we shall disregard the occurrence of electro-
motive forces; for if these admit of the existence of the
statical state at all, their action is too weak to come into
consideration in the problems which are of interest. In con-
ductors, accordingly, in which the quantities A do not vanish,
the forces X, Y, Z must vanish. In non-conductors the equations
(9,) take the form

dz 1
3y Y_dY_dX _az_dy dX

dy dz de dz dz  dy

Hence the forces possess a potential ¢, and can be put equal
to the negative differential coefficient of this potential. Since
the forces are everywhere finite, ¢ is everywhere continuous;
it can therefore continue right through the conductors, and is
then to be regarded as constant within these. At a surface of
separation the differential coefficients of ¢ tangential to the
separating surface continue through it without discontinuity.
Again, if ¢, denote the volume-density of the free electricity,
according to section (10) the potential ¢ satisfies everywhere
In space the equation A¢p= —4me,. In free ether this
assumes the form A¢=0; and after suitable transformation
for the surface of separation between heterogeneous bodies it
gives the condition

¢
().~ (), -3

where ¢/, denotes the surface-density of the free electricity.
From all these conditions it follows that the value of @,
within an arbitrary constant, is definite and equal to /{ (¢;/r)dr,
the integral being extended over the whole space with due
regard to the surfaces of separation. Thus when the potential
and the forces are distributed in the same way in different
non-conductors, the free electricities are the same. But the
corresponding quantities of true electricity are different, and
for the interior of two homogeneous non-conductors they are
in the ratio of the specific inductive capacities. Restricting
ourselves for the moment to isotropic bodies, the condition



224 FUNDAMENTAL EQUATIONS OF ELECTROMAGNETICS XIII

that the density of the true electricity in the interior of the
non-conductors should have given values e¢,, is expressed by
the equation

LR AR VR W

which at the boundary of two isotropic bodies assumes the

form
ag
(dn)
where e'w denotes the surface-density of the true electricity.

Let us now direct our attention to the stock of energy in
an electrostatic system. We obtain this successively in the

forms

de ,
(dn) = —dmd,,

1 o 1o odd . de . _d
g | (EX+ 0V + 57)0r = — &J (% + Dy T3 720"
ax dr? dd Culs
87r,[ <dx dJ dz)dT f¢ewd7 f -Td'r(l'r.

The integrations are here supposed to extend over all space
in which electrical stresses exist, and therefore up to the
boundaries where the stresses vanish, and the suitable trans-
formation of the integrals at the bounding surfaces is im-
plicitly assumed. When any motion of the ponderable bodies
takes place, and the amounts of true electricity attached
to the elements of these bodies remain constant, then,
according to section (12), the increase in the value of any one
of these expressions is equal to the work done by the
mechanical forces in this motion. Hence, if our system consists
of two quantities of electricity E, and E,, separated by the ether
and at a distance R apart which is very great compared with
their own dimensions, and if their distance apart increases by
an amount dR, the electric energy of the space decreases by an

amount

%(EIEZ + E2E1>ﬁ ’

Thus the expression EE/R? represents the mechanical
force with which the two electricities tend to move apart.
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Coulomb’s law, which, in the older theories forms the starting-
point of every discussion, here makes its appearance as a
remote final result.

With regard to the general determination of the pondero-
motive forces, we must here content ourselves with the follow-
ing remarks:—The last two expressions obtained for the energy
are just those whose variations represent the work done by
the motion of bodies in ordinary electrostatics. Hence it
follows that from the variations of these expressions we can
calculate the values of those same forces which are the starting-
point of ordinary electrostatics and are tested by experiment.
In particular, it may be shown that an element of a body
which contains a quantity ¢ of true electricity is acted upon
by the mechanical force-components eX, ¢Y, ¢Z. We thus
return to the same statements by means of which we first
introduced the electric forces.

14. Magnetostatics

The equations which connect the components of statical
magnetic forces are the same as those which obtain between
the components of statical electric forces. Hence all the state-
ments in the preceding section may, with the necessary changes
of notation, be repeated here. And if, nevertheless, the mag-
netic problems of interest are still distinct mathematically from
the electrostatic problems, this arises from the following
causes :—

(1) The class of bodies known as conductors is here
wanting.

(2) In no bodies, excepting those which exhibit permanent
or remanent magnetism, does true magnetism appear. Hence
in the interior of such bodies, provided they are isotropic, the
magnetic potential 4» must necessarily and always satisfy the

equation .
d/ d d/d d/ d
d:;,«(/f;i) + @(W\g) + d_f> =0,

which at the boundary between two such bodies becomes

(o), =), =
Q
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The equations which apply to the interior and the boundaries
of crystalline bodies are somewhat more complicated, but can
easily be given ; these equations have to be considered in dis-
cussing the phenomena’of the so-called magne-crystallic force.

(3) The specific inductive capacity of all known bodies is
greater than unity; on the other hand, the magnetic permea-
bility of many bodies is less than unity. We call such bodies
diamagnetic, and all others paramagnetic. The free magnetic
density at the surface of an isotropic body bounded by empty
space is equal to (1 — u) times the force in the interior of the
body normal to the surface. The sign of the surface-magnetism
(Belegung) of a diamagnetic body is therefore opposite to that of
a paramagnetic body when the sense of the force is the same.

The study of statical magnetism further acquires a peculiar
aspect, owing to the fact that iron and steel, which are the most
important substances in connection with magnetic phenomena,
do not fit in at all well with the theoretical treatment. These
substances exhibit permanent and remanent magnetism; hence
the polarisation of the ponderable material is here partly
independent of the prevailing force, and therefore the magnetic
state cannot be completely defined by a single directed magnitude.
Again, the relations between the force and the disturbances
produced by it are not linear; so that, for a double reason, our
theory does not include these bodies entirely within its scope.
In order to avoid excluding them entirely from consideration,
we replace them by the two ideal substances which approximate
most nearly to them—perfectly soft iron and perfectly hard
steel. We define the first as a substance which obeys our
equations, and for which the value of u is very large. We
attain a nearer approximation by giving u different values
according to the problem under consideration. We define
perfectly hard steel as a substance which obeys our equations,
whose magnetic permeability is unity, in whose interior true
magnetism can exist distributed in any way, provided always
that the total quantity of true magnetism existing in any such
piece of steel does not differ from zero.

Stationary States

The same conditions hold good for the state of stationary
disturbances in non-conductors as for the statical condition ; in
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conductors, which for the sake of simplicity we shall assume in
this section to be isotropic, the equations (9,), (9;), (9.), which
here come under consideration, take the form

rdZ dY e -
“@_42_, (NI raa,
dy dz | d=  dy
iX dzZ AN dL
— —— — 5 R 4 A
(15) 3 4y ~7 =0 (B o= = AmAy
CE_CZ—)E=O, l iL__d¥=4WAQU.
Ldx dy \dy  de

15) u=MX=X), v=NMY=Y'), w=NMZ-27).
Differentiating equations (15,) with respect to z, 7, =
respectively, and adding, we get

(159 W dv_y
de dy dz
which equation, at surfaces where the currents vary abruptly,
takes the form

(15,) (u,—u,) cos nz 4 (v, —v,) €os ny + (w, — w,) cos nz = 0.

Combining equations (154) and (15,) with equations (15,) and
(15,), we obtain a system which contains only the electric
forces. This can be treated without regard to the magnetic
forces, and gives us the theory of current-distribution. If the
components u«, ¢, w of the current are found, the treatment of
the equations (15,) further gives us the magnetic forces exerted
by these currents.

15. Distribution of Steady Currents

It appears from equations (15,) that, in the interior of the
conductor through which a current is flowing, the forces can
also be represented as the negative differential coefficients of a
function ¢, the potential, which is determined by the following
condition, which must obtain everywhere :—

fﬁ xdi’ ix@ ixdj =_£xx’
(15)<|dx< dx>+d < dy>+dz( dz> dx( )
f -
! — i(xY’)— i(xz’).
L dy dz
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At the surface separating two heterogeneous conductors this
equation takes the form

(15,) 4( A (%ﬁ)g ~M (Lji—;f>1 = — (A X/, — X)) cos

L — (Y =\ YY) cos ny — A2, —NZ!)) cos ng,

and hence at the boundary between a conductor and a non-
conductor the form

(15,) (ZZZ? = — X' cos ngz—Y cos ny—Z' cos npz.
n

In addition to these limiting conditions we have, according to
section (8), at limiting surfaces where the electromotive forces
become infinite, the further condition

$1— ¢, =/(X cos nz+ Y cos ny+ Z cos ng)dn,
(15;) = /(X' cos nx+ Y’ cos ny + Z’ cos nz)dn,
= ¢1,2 .

These conditions together determine ¢ definitely within a con-
stant which remains dependent upon the conditions outside the
conductor. For homogeneous conductors the equations (15;)
to (15;) assume the simpler forms—

( A¢ = 0 for the interior of the conductor,

A (di)> = A (d—¢> for the boundary between two con-
"\dn/, Ny quetors

(15,)-
a 9% _ 0 for the boundary adjoining a non-conductor,
n

i $1—¢d,=¢; o at a bounding surface where electro-
~ motive effects occur.

The equations thus obtained admit of immediate application
to problems on current-distribution in bodies of three dimen-
sions. Their application to lamellar conductors or to linear
conductors is easy, and gives the definition of resistance, Ohm’s
law for closed circuits, Kirchhoff’s laws for branched circuits, as
well as the other laws relating to the distribution of steady
currents.
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16. Magnetic Forces of Steady Currents

In order to determine the forces L, M, N produced by the
current-components «, v, w, which are now known, we introduce
as subsidiary magnitudes the so-called components of the vector-
potential, putting

U:fi"df, V=Fd~r, W=ffd7.
r r r

The integrals are to be extended over the whole space; thus 1t
follows from the conditions of the steady state that

dU dV  dW
%+»@+%_o.
We now put
(L= (‘Z_Y_d_v_‘(> —A<ﬂ_€lQ>
(16,) 4 dz dy/’ do  dz
i N=A<C_l_tj_fly_>,
dy dx

These quantities L, M, N are solutions of equations (1 dy)s
and satisfy the equation

dL dM  dN

%4—_@4_ dz =0

If, therefore, the forces actually present differ from these, the
differences between the two still satisfy the conditions for the
forces of statical magnetism, and may be regarded as arising from
these latter; this, however, does not exclude the supposition
that the magnetism itself is due to currents. But if no statical
magnetism is present at all, the formule above given represent
completely the magnetic forces present.

If we have only to deal with linear conductors, in which
the current ¢ flows, then the expressions udr, vdr, wdr in the
quantities U, V, W are replaced by the expressions idx, 1dy,
idz, where dw, dy, dz are the projections of the element ds of
the circuit on the three axes; and the integrations must then
be taken rtound all the circuits. Suppose we wish to
regard the magnetic forces of the whole current as the sum
of the actions of the separate current - elements. In order



230 FUNDAMENTAL EQUATIONS OF ELECTROMAGN ETICS XIII

to simplify the formule, let us suppose the element to be at
the origin and the point / 4/ # to be in the xy-plane ; then an
analysis of our integrals, which, as far as its results are con-
cerned, is admissible, gives for the action of the current-element
dz upon the point 2’ ¢/ 7—

1
d— , ,
_ T Aidr gy
L=O, 1\4=0, N=A’L(Zl73_=—_.)' )
dy’ 7
which formul® contain the expression of Ampére’s rule and
the Biot-Savart law.

Wherever w, v, w vanish, .. everywhere outside the con-
ductor in which the current flows, the values of the forces
must in accordance with equations ( 15,) possess a potential ¥,
to whose negative differential coefficients we can equate them.
If the forces arise from only a single closed linear circuit, this

potential can be expressed in the form
1

d-
16 V=—Ay de + const.
b dn

where dw denotes the element of any surface through the
circuit, 7 the normal to this surface, and where the integration
is extended over the whole of the surface bounded by the
circuit.  We here regard as positive that side of the surface
from which the current appears to flow in the direction in
which the hands of a clock move. For the negative differential
coefficients of the above expression can in all cases be brought,
by known methods of transforming integrals, into the forms
found for L, M, N. Except in the circuit itself these differential
coefficients are therefore everywhere finite and continuous ; and,
even if the integral contained in ¥ becomes discontinuous at
the surface w, the necessary continuity can always be conferred
upon W itself if we regard the constant contained in it as
having an infinite number of values, and employ a value
varying by 47 A< whenever we pass through the surface o.
The potential itself thus attains an infinite number of values,
and changes in value by 47Ai each time we return to the
same point after passing round the circuit.

Various interpretations can be assigned to the integral
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which occurs in W. In the first place, it can be regarded as
the potential due to a magnetic shell. By following out this
conception we arrive at Ampére’s theory of magnetism. Again
we may, with Gauss, regard the value of this integral at a given
point as the spherical angle which the circuit subtends at this
point. From this, by an easy transition, we arrive at the
following statement :—For any given point this integral repre-
sents the number of lines of force which proceed from an unit
pole placed at the point and are embraced by the circuit. We
may supplement this by applying the following statement to
the potential itself (including its manifoldness) :—The differ-
ence between its values at two points is equal to the product of
A4 into the number of lines of force which cut the circuit in a
definite direction when an unit pole is moved in any manner
from the one point to the other.

From our standpoint the last interpretation is the most
suitable; it also allows us, with the aid of sections (12) and
(14), to deduce the following conclusions:—Firstly, the mechani-
cal work which must be done in moving a magnet-pole, or a
system of unchangeable magnetism, in the neighbourhood of a
current whose strength is kept constant, is equal to the number
of lines of force of the magnet-pole or magnetic system which
cut the circuit in a definite direction, multiplied by the current
and the constant A. Secondly, the mechanical work which
must be done in moving a constant current in a magnetic field
is equal to the number of lines of force which are cut by the
circuit during the motion, multiplied by the current and the
constant A. Lastly, and in particular, the mechanical work
which must be done in moving a constant current 1 in the
neighbourhood of a constant current 2, is equal to the number
of lines of force proceeding from the circuit 2 which are cut
by the circuit 1 during the motion, multiplied by the current
in 1 and by the constant A. It is also equal to the number
of lines of force proceeding from the circuit 1 which cut the
circuit 2 during the motion, multiplied by the current in 2
and by the constant A. Both expressions lead to the same
result ; we can prove this by representing the product of the
current in the one circuit and the number of lines of force
from the other circuit which pass through it, by an expression
which is symmetrical with reference to both. For let the
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symbols 4, ds refer to the circuit 1; and the symbols ¢/, ds/,
U/, V!, W, I/, M/, N’ refer to the circuit 2.  Then the product
of A¢ into the number of lines of force from 2 which pass
through 1 is equal to

At/ (L' cos n,z + M’ cos n,y + N’ cos n,2)dw
, av’  adw’ dwW’  qu’
=A% f ( )cos nye + <— - —)cos ny

dz dy dx dz
(dU’ av’ } p
d‘y —_— E Cos n,z (1))

= — A% [ (U’ cos s,z + V’ cos 8,y + W’ cos sz2)ds
A% / /cos 8% €08 8w + cos s,y cos s’y + cos sz cos &’ 2
7

dsds

— A% [ / 08 € dsas
J /4

where ¢ denotes the angle between the two current-elements,
The expression obtained is symmetrical with respect to both
circuits. ~ 'We know that in fact the variations of this expres-
sion—Neumann’s potential of the one circuit upon the other
multiplied by A% —gives the work required for the relative
displacement of closed currents, and hence the ponderomotive
forces which exist between the currents when at rest. We
also know that this statement contains everything that can
with certainty be asserted respecting the ponderomotive forces
which arise between currents,

We shall next calculate the magnetic energy of a space in
which the stationary current-components «, v, w and the un-
changeable magnetic densities m are distributed, assuming the
restriction that no magnetisable bodies are present in the space.
If ¥ now represents the potential of the magnetisms m, we
obtain the energy successively in the forms—

(@ N
A AV dW 14V AW dU 14
(16); s (10 30) +M<d77£‘K@>
dU dV 1qd¥
NG e i) o
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+“(%—(%4>%d7
dL dM d\I
16, G

=5A%/(Uu+ Vo + Wuw)dr + L / \I'md'r,
or, in the case of linear currents—

=14 f f w Cqsedsds’-i- 1 [Umdr,

L

where, in the first part of the last form, the integration is to be
carried out with respect to both ds and d¢, and is to include
all currents present. It is clear from this last form that the
displacement of unchangeable magnets with respect to un-
changeable currents does not alter the magnetic energy of the
space. Hence the mechanical work which is done in such a
displacement does not find its compensation in the variation of
the magnetic energy of the space, as it does in the case of the
displacement of unchangeable magnets among themselves; we
must account in some other way for the work which has
been done. It further appears from the same formula that
the relative displacement of currents which are maintained
constant does determine a change in the energy of the space,
which is equal to the absolute value of the work done. But
when we pay due regard to the signs, we see that this change
does not take place in such a sense that it can be regarded as
the compensation for the lost mechanical energy, but in the
opposite sense. Here again, then, we have to account for double
the amount of work which the mechanical forces do in the
relative displacement of the circuits. We shall return to this
at the end of the following section.

Dynamical Phenomena

From among the infinite number of possible forms of the
variable state, comparatively few groups of phenomena have
hitherto fallen under observation. We shall refer to these
groups without attempting any exhaustive and systematic
classification of the subject.
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17. Induction wn Closed Circuits

In accordance with equations (9,) electric forces must
necessarily be present in a varying magnetic field. In general
these forces must be very weak, for they contain the very small
factor A ; on this account they can only be detected through the
currents which they excite in closed circuits, or through their
cumulative action in very long linear circuits which are closed
to within a small fraction of their lengths. Hence the effects
which can be experimentally measured invariably give us only
the integral effect of the electric force in a closed circuit, 7.c.
the integral /(Xdx + Ydy + Zdz) taken along a looped line.
According to a known method of transforming integrals, which
we have already used, this line-integral is equal to the surface-
integral

f% <dZ (ZY)COS N2 + ax (E>cos Y+ ((—ZX (E>cos nv}dw
dy dz ’ dz  dx Y dr dy Ty

taken over any surface w bounded by the line in question.
Applying equations (9,) this expression becomes equal to

A% f (£ cos nz + Ut cos n,y + W cos n2)dw.

We may express this in words as follows :—The electro-
motive force which manifests itself in a closed circuit is equal
to the variation per unit time of the number of magnetic lines
of force which traverse the circuit multiplied by A. In
particular, if the induction arises from a closed variable current,
and if it is assumed that no magnetisable bodies are present, then
according to the results of the previous section the induced
electromotive force is equal to the product of the Neumann’s
potential of the two circuits on one another and the variation
per unit time of the inducing current, multiplied by A% These
laws—of which the first is the more general —with their con-
sequences embrace all the phenomena of induction which have
been actually observed in the case of conductors at rest.

Induction in moving conductors lies beyond the range to
which the present dissertation is restricted. But as far as
linear conductors are concerned, the transition from the case of
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induction in conductors at rest can be made by the following
statement :—Whether the magnetic field in the immediate
neighbourhood of a closed circuit changes in consequence of
the motion of ponderable bodies, or in consequence of purely
electromagnetic changes of state, the electromotive force pro-
duced in the closed circuit is the same, provided the change in
the magnetic field in its immediate neighbourhood is the same.
In accordance with this and the previous statements, the induced
electric force in a conductor in motion is equal to the number
of lines of force which are cut by the conductor in a definite
direction per unit of time, multiplied by A. The product of
this electric force and of the current in the moving conductor
gives, according to section (11), the thermal or chemical work
done by induction in the conductor. It follows from the
results of the preceding section, if we pay due regard to sign,
that this is equal to the mechanical work which must be done
by the external forces acting upon the circuit. Hence, if a
current of constant strength is maintained in a circuit, and
this circuit is moved towards a fixed magnet, the thermal and
chemical energy developed in the circuit accounts for the
mechanical work done; while the magnetic energy of the
system remains constant. But, on the other hand, if this
circuit is moved towards another in which a constant current is
maintained, the larger amount of thermal and chemical energy
developed in the one through the motion accounts for the
mechanical work done; and the same extra amount of energy
which appears in the other circuit accounts for the diminu-
tion in the magnetic energy of the field. Or, to speak more
accurately, the sum of the former amounts of energy balances
the sum of the latter. This settles the point referred to at the
end of section (16).

18. Electromagnetics of Unclosed Currents

With regard to the phenomena which are possible, this is
the richest region of all; for it includes all those problems
which we cannot apportion elsewhere as special cases. But
as far as actual experience is concerned, it is a region which
hitherto has been but slightly explored. The oscillations of
unclosed induction-circuits, or of discharging Leyden jars, can be



236 FUNDAMENTAL EQUATIONS OF ELECTROMAGNETICS XI1I

treated with sufficient approximation according to the laws of
the preceding section; and so far only the electric waves and
oscillations of short wave-length, which have been discussed
in the earlier papers, strictly belong here. With regard to the
theoretical treatment of this section we must therefore refer to
these earlier papers—pointing out, however, that the splitting
up of the electric force into an electrostatic and an electro-
magnetic part does not in these general problems convey any
physical meaning which can be clearly conceived, nor is it
of any great mathematical use; so that, instead of following
earlier methods of treatment, it will be expedient to avoid it.

19. Optical Phenomena in Isotropic Bodies

We include in optics those electromagnetic disturbances
which are purely periodic in time, and whose period does not
exceed a very small fraction, say the billionth (10-1%) part, of a
second. By none of the means which are at our disposal for
detecting such disturbances can we recognise the magnetic and
electric forces as such; what we are able to detect are simply
the geometrical relations according to which the existing dis-
turbance is propagated in different directions with different
intensities. ~Hence the mathematical representation of the
phenomena may also be confined to following the propagation
of one of the two kinds of force, after eliminating the opposite
kind ; and it is immaterial which of the two is chosen for
consideration. If we restrict ourselves to homogeneous isotropic
non-conductors and eliminate in the one case the electric, in
the other the magnetic, force-components, we obtain from
equations (4,) and (4,) the following equations :—

( 2 [ 2
A’ep ((Zh: = AL, AQG/L(-Z% = AX,
A%,Ld;\f =AM, Alep (f;:‘ =AY,
e B A%) 1 g
AZep g = AN, AZey i AZ,
dL dM aN dX dY dZ
&ty t =0 Ty te="
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The solutions of these, assuming that the disturbances are
purely periodic, are always solutions of the equations (4,) and
(1) as well.  From each of the two systems of equations (19,)
and (19;) it can be seen that transverse waves are possible,
and that longitudinal waves are impossible; each of the two
systems gives for the velocity of the possible waves the value

/A e ;

from each of the two systems the phenomena of rectilinear
propagation, of diffraction, of the interference of natural and of
polarised light can be deduced, and the different kinds of
polarisation can be understood. By returning to equations
(4,) and (4,) it can be shown that the simultaneous directions
of the electric and the magnetic force at any point of a plane
wave are invariably perpendicular to one another.

Suppose that the surface of separation of two homogeneous
1sotropic bodies coincides with the azy-plane. In accordance
with section (8), and bearing in mind that we are dealing only
with periodic disturbances, the following conditions obtain at
this surface of separation

Ll == LQ’ Xl = X27
19+ M, =M,, (1994 Y, = Y,
mN, = #o N, 5 6z, = e,

Each of these systems of limiting equations, together with
the corresponding equations for the interior of both bodies,
gives the laws of reflection, of refraction, of total reflection,—
in fact, the fundamental laws of geometrical optics. From
each of them it follows that the intensity of reflected and
refracted waves is dependent upon the nature of their polarisa-
tion, and that this dependence, as well as the retardation of
phase of the totally reflected waves, is in accordance with
Fresnel’s formule. If we deduce these formule from the
equations of the electric forces (19,) and (19,), it will be
found that the method of development corresponds with the
method of deducing these formule as given by Fresnel him-
self. If we start from the equations of the magnetic force
(19,) and (19,), we approach the path by which F. Neumann
arrived at Fresnel's equations. From our more general
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standpoint we cannot only see from the start that both
paths must lead to the same goal, but we can also recog-
nise that the two are equally satisfactory. In the actually
observed phenomena of reflection the electric and magnetic
forces are not completely interchangeable, and the two paths
appear to be different. This is because the magnetic per-
meabilities are almost the same and equal to unity for all
bodies which come under consideration, whereas the specific
inductive capacities differ considerably ; and hence the optical
behaviour of bodies is chiefly determined by their electrical
properties.

If the xy-plane forms the boundary between our non-
conductor and a perfect conductor, the following equations
obtaln in this plane :—

(19e) NZO,
(19) X=0, Y=0.

From these, together with the corresponding equations for
the interior of the non-conductor, it follows that for every
angle of incidence and every azimuth of polarisation the reflec-
tion is total.” Since all actual conductors occupy an inter-
mediate position between perfect conductors and non-conductors,
the reflection from them may be expected to be of a kind
intermediate between total reflection and the reflection from
transparent bodies. Inasmuch as metallic reflection occupies
such a position, our equations appear adapted for giving a
general picture of metallic reflection as well. Up to the present,
however, investigation does not enable us to state how far
such a representation, by suitable choice of the constants, can
be extended into details.

It has already been pointed out in the first section that
the phenomena of dispersion require the introduction of at least
two electric or two magnetic quantities, and that they therefore
lie outside the limits of our present theory.

20. Optics of Crystalline Bodies

We shall confine our attention to opticalA phenomena in
the interior of a homogeneous, completely transparent crystal,—
in which we further assume that the axes of symmetry of the
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electric and the magnetic energy coincide. Let the co-ordinate
axes be parallel to these common axes of symmetry, and, for
the sake of simplicity, let us write

€1, € €3, M1, Mo, pg 10Stead of ey, €9, €33, pi1, Bog K

Equations (5,) and (5,), which here come under consideration,
now take the form

( (ZL_(ZZ dY (A dX dM dN
Brae “ay T dz €1W=E—dy’
(20,14 di\lzcg_(lz, 20 A LZ_Y:=CZ_¢\I_(ZL
a Brar — @z T de (20,)7 Ae, dt ~ de  dz’
dN _dy dxX, L2 _dL M

e T A Ty aE T Ay T de

These equations are integrated by assuming that the light
consists of plane waves of plane-polarised light, corresponding
to the following statements :—The magnetic force is perpen-
dicular to the electric polarisation, and the electric force is
perpendicular to the magnetic polarisation. In general the
direction of both forces does not coincide with the wave-plane;
the direction of both polarisations lies in the wave-plane. Hence
the direction which 1s perpendicular to both polarisations is the
wave-normal ; the direction which is perpendicular to both forces
is the direction in which, according to section (11), the energy
is propagated ; in optics it is called the ray. To every given
position of the wave-normal there correspond in general two
possible waves of different polarisations, different velocities, and
different positions of the corresponding rays. If we suppose that
at any given instant plane waves starting from the origin of co-
ordinates proceed outwards in all possible directions of the wave-
normals, these wave-planes after unit time envelop a surface,—
the so-called wave-surface. Each single wave-plane touches
the wave-surface at a point on the corresponding ray from the
origin. The equation to the surface enveloped by the wave-
planes is found to be

2 2

iyt A\ @y 2 ot 1 1
ErLr D) -2 )
€, € €37 Ny Mo Mg €141 \Eglhg  €glhy

y /1 1 2 /1 1 1
- < + ) - ( + > + =0
- Egflg Ny €30l €3fbg 1o Eafly €1€2€3M1 Mofls

(20,)
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The surface of the fourth degree represented by this equation
cuts each of the co-ordinate planes in two ellipses. In one of
the co-ordinate planes the two ellipses intersect each other in
four points—the four conical points (Nabelpunkte) of the sur-
face; in the two other co-ordinate planes one of the ellipses
surrounds the other; and these statements hold good whatever
the values of ¢ and u are. To a very near approximation
M1 = ps = p3 =1 for all actual crystals; in this case the general
form of the equation reduces to that of Fresnel’s wave-surface,
and of the two ellipses in which the surface cuts the co-ordi-
nate planes, one reduces to a circle.

It is well known that the explanation of double refraction, of
reflection at crystalline surfaces, and many of the interference-
phenomena observed in crystals are intimately connected with
the consideration of the wave-surface and the simpler forms which
it assumes in special cases. But other facts, again, in crystallo-
graphic optics cannot be mastered by following out the idea of
a single electric and a single magnetic directed magnitude ;
hence these facts lie outside the present limits of our theory.

In sections (17) to (20) we have completed the enumera-
tion of those cases of the variable state whose importance has
up to the present time given rise to the development of special
theories.



