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THE FORCES OF ELECTRIC OSCILLATIONS, TREATED
ACCORDING TO MAXWELL'S THEORY

(Wiedemann's Ann. 36, p. 1, 1889.)

THE results of the experiments on rapid electric oscillations
which I have carried out appear to me to confer upon Max-
well’s theory a position of superiority to all others. Never-
theless, I based my first interpretation of these experiments
upon the older views, seeking partly to explain the phenomena
as resulting from the co-operation of electrostatic and electro-
magnetic forces. To Maxwell’s theory in its pure development
such a distinction is foreign. Hence I now wish to show that
the phenomena can be explained in terms of Maxwell’s theory
without introducing this distinction. Should this attempt
succeed, it will at the same time settle any question as to a
separate propagation of electrostatic force, which indeed is
meaningless in Maxwell’s theory.

Apart from this special aim, a closer insight into the play
of the forces which accompany a rectilinear oscillation is not
without interest.

The Formule

In what follows we are almost solely concerned with the
" forces in free ether. In this let X, Y, Z be the components of
the electric force along the co-ordinates of z, ¥, z;' L, M, N,

1 Supposa that you are standing at the origin of the system of co-ordinates
on the xy-plane. Further assume that the direction of positive  is straight in
front, of positive z upwards, and of positive y to the right hand. Unless these
conventions were made, the signs of the electric and magnetic forces in the sub-
sequent equations would not have their usual meanings.
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the corresponding components of the magnetic force, both being
measured in Gauss units;' and let ¢ denote the time and A
the reciprocal of the velocity of light. Then, according to
Maxwell, the time-rate of change of the forces is dependent
upon their distribution in space as indicated by the following
equations :(—

(AL dZ dY AdX aM @

dt dy  dz dat ﬁ_dg/

dM dX dZ dY dN dL
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Originally, and therefore always, the following conditions
must be satisfied :—

aL aM N _ o aX dY az
Gt gy Ta =0 and o+p + 5 =0
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The electric energy contained in a volume-element 7 of

1
the ether is equal to - / (X*+Y?+ Z*dr; the magnetic energy
™ ' .

is equal to él; / (L? 4+ M?+N?%dr, the integration extending

through the volume 7. The total energy is the sum of both
these portions.

These statements form, as far as the ether is concerned,
the essential parts of Maxwell’s theory. Maxwell arrived at
them by starting with the idea of action-at-a-distance and
attributing to the ether the properties of a highly polarisable
dielectric medium. We can also arrive at them in other
ways. But in no way can a direct proof of these equations be
deduced from experience. It appears most logical, therefore,
to regard them independently of the way in which they have
been arrived at, to consider them as hypothetical assumptions,
and to let their probability depend upon the very large
number of natural laws which they embrace. If we take up

! H, v. Helmholtz, Wied. Ann. 17, p, 48, 1882,
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this point of view we can dispense with a number of auxiliary
ideas which render the understanding of Maxwell’s theory
more difficult, partly for no other reason than that they really
possess no meaning,! if we finally exclude the notion of direct
-actlon-at-a-distance.

Multiply equations (1) by L, M, N, and equations (2) by
X, Y, Z; add the equations together and integrate over a volume
of which dr is the volume-element and de the surface-element.
We thus get—

d (1 1
C ) 2 (X242 4+ 20)d _fL2 M2 N?d}
dt{87J( Y4 Z)dr+ o [(L2 M+ Jdr

1 .
e | { NY —MZ) cos n + (LZ—NX) cos ny

+ (MX —LY) cos nz } dw,

where nz i,y nz denote the angles which the normals from
dw make with the axis.

This equation shows that the amount by which the energ
of the space has increased can be regarded as having entered
through the elements of the surface. The amount which enters
through each element of the surface is equal to the product of
- the components of the electric and magnetic forces resolved
along the surface, multiplied by the sine of the angle which
they form with each other, and divided by 4wA. It is well
known that upon this result Dr. Poynting has based a highly
remarkable theory on the transfer of energy in the electro-
magnetic field.?

With regard to the solution of the equations we restrict
ourselves to the special but important case in which the dis-
tribution of the electric force is symmetrical about the z-axis,
in such a way that this force at every point lies in the
meridian plane passing through the axis of z and only
depends upon the z-co-ordinate of the point and its distance
p= Na?+3? from the z-axis. Let R denote the component
of the electric force in the direction of p, namely Xu/p + Yy/p;
and further let P denote the component of the magnetic force

1 As an example I would mention the idea of a dielectric-constant of the ether.
2 J. H. Poynting, Phil. Trans., 1884, II. p. 343.
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perpendicular to the meridian plane, namely Ly/p—Mz/p.
We then assert that if II is any function whatever of P % ¢,
which satisfies the equation—

A@T1/dt2 = ATH,
and if we put Q = pdII/dp, then the system

pl = dQ/dp, pP = AdQ/dt,
pR= — (ZQ/dz, N=0

is a possible solution of our equations.
In order to prove this assertion, we observe that we have—

{ *11 l a?Il
X= REL =92, Lo p¥®_ 4
dx dz dz dy dy dt
dp a?11 JAp a?Il
Y= R@ T dy d7 M= -1 de Adx dt
1d/ dllI ?11  d211
z=-2(p%") ="+ N= 0.
pdp\ dp dr®  dy?

We have only to substitute these expressions in the
equations (1), (2) and (3) to find equations (2) and (3) identi-
cally satisfied, and also equations (1) if we have regard to the
differential equation for II.

It may also be mentioned that conversely, neglecting
certain limitations of no practical importance, every possible
distribution of electric force which is symmetrical about the z-
axis can be represented in the above form ; but for the purpose
of what follows it is not necessary to accept this statement.

The function Q is of importance to us. For the lines in
which the surface of revolution Q = const. cuts its meridian
planes are the lines of electric force; if we construct these
for every meridian plane at any instant we get a clear
representation of the distribution of the force. If we cut
the cup-shaped space lying between the surfaces Q and Q + dQ
in various places by surfaces of rotation around the z-axis, then
for all such cross-sections the product of electric force and cross-
section, which Maxwell calls the induction across the section,
is the same. If we arrange the system of surfaces Q = const.
so that in passing from one to another Q increases by the
same amount dQ, then the same statement holds good if we
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compare amongst themselves the cross-sections of the various
spaces thus formed. In the plane diagram formed by the
intersection of the meridian planes with the equidistant surfaces
Q = const., the electric force is only inversely proportional to
the perpendicular distance between two of the lines Q = const.
when the points compared lie at the same distance from the
z-axis; in general, the rule is that the force is inversely pro-
portional to the product of this distance, and of the co-ordinate
p of the point under consideration.

In what follows we shall introduce along with p and z the
polar co-ordinates r and 6, which are connected with the
former by the relations p=7 sin 6, z=17rcos 6 ; r then denotes
the distance from the origin of our system of co-ordinates.

The Forces around a Rectilinear Oscillation

Let E denote a quantity of electricity, [ a length, m =/
the reciprocal of a length, and n ==/T the reciprocal of a time.
Let us put
sin (mr — nt)

II=El

7

This value satisfies the equation A’d2II/df2= AII, if we
stipulate that m/n=T/A=A, and hence that A/T shall be
equal to the velocity of light. And it must be noticed that
the equation referred to is satisfied everywhere, except at the
origin of our system of co-ordinates.

In order to find out what electrical processes at this point
correspond to the distribution of force specified by II, let us
investigate its immediate neighbourhood.  Thus let » be
vanishingly small compared with A, and mr negligible compared
with nf. Then II becomes® equal to —Elsinnf/r. Now

since
dz  d? 1 dz /1
(@#Jy@) ;)= - =)
we have
X = —d?11 / dedz, Y= —d*l / dydz, = —d?[1 / dzdz.

1 [See Note 22 at end of book.]
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Thus the electric forces appear here as the derivatives of a
potential—

dIl { /1
= — Kl sinnt - (—),
dz dz \r

¢=

and this corresponds to an electrical double-point, whose axis
coincides with the z-axis, and whose moment oscillates between
the extreme values + E/ and —E! with the period T. Hence
our distribution of force represents the action of a rectilinear
oscillation which has the very small length 7, and on whose
poles at the maximum the quantities of electricity + E and — E
become free. The magnetic force perpendicular to the direction
of the oscillation and in its immediate neighbourhood comes

out as—
P = AEln cos nt sin /2

According to the Biot-Savart law this is the force of a
current-element of length / lying in the direction of the axis
of z and whose intensity, in magnetic measure, oscillates
between the extreme values +7AE/T and —7AE/T. 1In
fact, the motion of the quantity of electricity E determines a
current of that magnitude.

From II we get—

Q= Elm{cos (mr —nt) — sin (inr — nf) }sin‘zﬁ,

mr

and from this the forces Z, R, P follow by differentiation.
Now it is true that the formule in general turn out to be too
complicated to allow of a direct survey of the distribution of
the forces. But in some special cases, which we will now
indicate, the results are comparatively simple— | :

(1) We have already considered the immediate neighbour-
hood of the oscillation.

(2) In the z-axis, .. in the direction of the oscillation, we
have dp =rd@, dz=dr, 8 =0 ; so that here

R=0, P=0,
{cos (mr—ﬂti—

The electric force acts always in the direction of the
oscillation ; at small distances it diminishes as the inverse

_ 2Eim

7 sin (mr —nt))

r mr
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cube, at greater distances as the inverse square, of the
distance. _

(3) In the ay-plane, ie. when z=0, we have dz= —rd#,
dp=dr, 8=90%; and therefore—

_ AElmn { sin (smr—nt) + cos (mr —nt) }’
G nr
R=0,
., Elm?

{ — sin (mr —nt) —

mr m2p2

cos (mr—mnt) sin (mr— nt)}
,

In the equatorial plane through the oscillation the electric
force is parallel to the oscillation, and its amplitude is

El/1—m?2+m**/r3.  The force diminishes continuously
with increasing distance, at first rapidly as the inverse cube,
but afterwards only very slowly and inversely as the distance
itself. At greater distances the action of the oscillation can
only be observed in the equatorial plane, and not along the
axis.

(4) At very great distances we may neglect higher powers
of 1/r as compared with lower ones. Thus we have at such
distances—

Q = Elm cos (mr — nt) sin%6,
from whi~h we deduce—

P =A.Eimn sin (mr —nt) sinf/r,
Z = — Elm? sin (mr — nt) sin®6/r,
R=  Eim? sin (mr — nt) sinf cosd/r.

Whence it follows that Z cos 6 + R sin §=0. Hence at
great distances the force is everywhere perpendicular to the
radius vector from the origin of the force; the propagation
takes place in the form of a pure transversal wave. The
magnitude of the force is Eim?sin (mr —nt)sind/r. At a
constant distance from the zero-point it decreases towards the
axis, being proportional to the distance from the latter.

In order now to find the distribution of force in the
remaining parts of space we make use of graphic representa-
tion, drawing for definite times the lines of electric force, <.e.
the curves Q = const., for equidistant values of Q. Since Q
appears as the product of two factors, of which the one
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depends only upon 7, and the other onlyAupon 6, the con-
struction of these curves presents no great difficulty. We

Fig. 30.

split up each value of Q, for which we wish to draw the
curve, in various ways into two factors; we determine the
angle ¢ for which sin’0 is equal to the one factor and, by



X TREATED ACCORDING TO MAXWELL'S THEORY 145

means of an auxiliary curve, the value of » for which the
function of » contained in Q is equal to the other factor; in

Rs R,
SEP)

N

- this way we find as many points on the curve as we please.

On setting about the construction of these curves one perceives

many small artifices which it would be tedious to exhibit here.
L .

Fig. 29,
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We shall content ourselves with considering the results of the
construction as shown in Figs. 27-30. These figures exhibit
the distribution of force at the times ¢=0, 1T, 1T, 3T,
~or by a suitable reversal of the arrows for all subsequent
times which are whole multiples of 1T. At the origin is
shown, in its correct position and approximately to cor-
rect scale, the arrangement which was used in our earlier
experiments for exciting the oscillations. The lines of
force are not continued right up to this picture, for our
formulz assume that the oscillator is infinitely short, and
therefore become inadequate in the neighbourhood of the finite
oscillator.

Let us begin our explanation of the diagrams with Fig. 27.
Here ¢ =0; the current is at its maximum strength, but the
poles of the rectilinear oscillator are not charged with elec-
tricity—mno lines of force converge towards them. But from
the time ¢ = 0 onwards, such lines of force begin to shoot out
from the poles; they are comprised within a sphere repre-
sented by the value Q=0. In Fig. 27, indeed, this sphere is
still vanishingly small, but it rapidly enlarges, and by the
time ¢= 4T (Fig. 28) it already fills the space R. The
distribution of the lines of force within the sphere is nearly of
the same kind as that corresponding to a static electric charge
upon the poles. The velocity with which the spherical surface
Q = 0 spreads out from the origin is at first much greater than
1/A; in fact, for the time T this latter velocity would only
correspond to the value of I\ given in the figure. At an
infinitesimal distance from the origin the velocity of propagation
is even infinite. This is the phenomenon which, according to
the old mode of expression, is represented by the statement that
upon the electromagnetic action which travels with the velocity
1/A, there is superposed an electrostatic force travelling with
infinite velocity. In the sense of our theory we more correctly
represent the phenomenon by saying that fundamentally the
waves which are being developed do not owe their formation
solely to processes at the origin, but arise out of the conditions
of the whole surrounding space, which latter, according to our
theory, is the true seat of the energy. However this may be,
the surface Q =0 spreads out further with a velocity which
gradually sinks to 1/A, and by the time t=1T (Fig. 29) fills
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the space £, At this time the electrostatic charge of the
poles 1s at its greatest development; the number of lines of
force which converge towards the poles is a maximum. As
time progresses further no fresh lines of force proceed from the
poles, but the existing ones rather begin to retreat towards the
oscillating conductor, to disappear there as lines of electric
force, but converting their energy into magnetic energy. Here
there arises a peculiar action which can plainly be recognised,
at any rate in its beginnings, in Fig. 30 (¢=2T). The lines
of force which have withdrawn furthest from the origin become
laterally inflected by reason of their tendency to contract
together ; as this inflection contracts nearer and nearer towards
the z-axis, a portion of each of the outer lines of force detaches
itself as a self-closed line of force which advances indepen-
dently into space, while the remainder of the lines of force sink
back into the oscillating conductor.

The number of receding lines of force is just as great as
the number which proceeded outwards, but their energy is
necessarily diminished by the energy of the parts detached.
This loss of energy corresponds to the radiation into space.
In consequence of this the oscillation would of necessity soon
come to rest unless impressed forces restored the lost energy
at the origin. In treating the oscillation as undamped, we
have tacitly assumed the presence of such forces. In Fig. 27
—to which we now return for the time ¢=T, conceiving the
arrows to be reversed—the detached portions of the lines of
force fill the spherical space £,, while the lines of force pro-
ceeding from the poles have completely disappeared. But new
lines of force burst out from the poles and crowd together the
lines whose development we have followed into the space £,
(Fig. 28). It is not necessary to explain further how these
lines of force make their way to the spaces B, (Fig. 29), £,
(Fig. 30), B, (Fig. 27). They run more and more into a pure
transverse wave-motion, and as such lose themselves in the
distance. The best way of picturing the play of the forces
would be by making drawings for still shorter intervals of
time and attaching these to a stroboscopic disk.

A closer examination of the diagrams shows that at points
which do not lie either on the z-axis or in the xy-plane the
direction of the force changes from instant to instant. Thus,
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if we represent the force at such a point in the usual manner
by a line drawn from the point, the end of this line will not
simply move backwards and forwards along a straight line
during an oscillation, but will describe an ellipse. In order to
find out whether there are any points at which this ellipse
approximates to a circle, and in which, therefore, the force turns
successively through all points of the compass without any
appreciable change of magnitude, we superpose two of the
diagrams which correspond to times differing by 4T from one
another, eg. Figs. 27 and 29, or 28 and 30. At such points
as we are trying to find, the lines of the one system must
clearly cut those of the second system at right angles, and the
distances between the lines of the one system must be equal
to those of the second. The small quadrilaterals formed by
the intersection of both systems must therefore be squares at
the points sought. Now, in fact, regions of this kind can be
observed ; in Figs. 27 and 28 they are indicated by circular
arrows, the directions of which at the same time give the
direction of rotation of the force. For further explanation
dotted lines are introduced which belong to the system of
lines in Figs. 29 and 30. Furthermore, we find that the
behaviour here sketched is exhibited by the force not only at
the points referred to, but also in the whole strip-shaped
tract which, spreading out from these points, forms the neigh-
bourhood of the z-axis. Yet the force diminishes in magnitude
so rapidly in this direction that its peculiar behaviour only
attracts attention at the points mentioned.

In an imperfect series of observations which are not
guided by theory, the force-system here described, and
required by theory, may well exhibit itself in the manner
described in an earlier paper! The observations referred
to do not by any means enable us to recognise all the com-
plicated details, but they show correctly the main features
of the distribution. According to both observation and
theory the distribution of the force in the mneighbourhood
of the oscillator is similar to the electrostatic distribution.
According to both observation and theory the force spreads
out chiefly in the equatorial plane and diminishes in that
plane at first rapidly, then slowly, without becoming zero

1 See V., p. 90.
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at any intermediate distance. According to both observa-
tion and theory the force in the equatorial plane, along
the axis, and at great distances, is constant in direction and
variable in magnitude; whereas, at intermediate points, its
direction varies greatly and its magnitude but little. The
only want of accord between theory and the observations
referred is in this—that, according to the former, the force at
great distances should always be perpendicular to the radius
vector from the origin, whereas, according to the latter, it
appeared to be parallel to the oscillation. These two come
to the same thing for the neighbourhood of the equatorial
plane, where the forces are strongest, but not for directions
lying between the equatorial plane and the axis. I believe
that the error is on the side of the observations. In
the experiments referred to the oscillator was parallel to
the two main walls of the room used; and the components
of the force parallel to the oscillator might thereby be
strengthened as compared with the components normal to
the oscillator.

I have therefore repeated the experiments, making various
alterations in the position of the primary oscillator, and found
that in certain positions the results were in accordance with
theory. Nevertheless, the results were not free from ambiguity,
for at great distances and in places where the force was feeble,
the disturbances due to the environment of the space at my
disposal were so considerable that I could not arrive at a
trustworthy decision.

While the oscillator is at work the energy oscillates in and
out through the spherical surfaces surrounding the origin. But
the energy which goes out during each period of oscillation
through every surface is greater than that which returns, and
is greater by the same amount for all the surfaces. This
excess represents the loss of energy due to radiation during
each period of oscillation. We can easily calculate it for a
spherical surface, whose radius » is so great that we may use
the simplified formulee. Thus the energy which goes out in

the element of time d¢ through a spherical zone lying between
@ and 0+ d8 is

dt.2mr sin 0.rd0.(Z sin 0 — R cos 6) P.1/47A.



150 THE FORCES OF ELECTRIC OSCILLATIONS IX

If we here substitute for Z, P, R, the values corresponding
to large values of r and integrate with respect to € from 0 to r,
and with respect to ¢ from 0 to T, we get for the energy which
goes out through the whole sphere during a half-oscillation

LEPmPnt = B2 /33,

Let us now try to deduce from this an approximate
estimate of the quantities actually involved in our experi-
ments. In these we charged two spheres of 15 cm. radius in
opposite senses up to a sparking distance of about 1 cm. If
we estimate the difference of potential between the two spheres
as 120 C.G.S. electrostatic units (gm.} cm.? sec.™), then each
sphere was charged to a potential of ¥ 60 C.G.S. units, and
therefore its charge was E=15 x 60 = 900 C.G.S. units
(gm? cm.? sec.™”).  Hence the whole stock of energy which the
oscillator possessed at the start amounted to 2 x 2% 900 x 60
= 54,000 ergs, or about the energy which a gramme-weight
would acquire in falling through 55 cm. The length I of the
oscillator was about 100 cm., and the wave-length about
480 cm. Hence it follows that the loss of energy in the half-
period of oscillation was about 2400 ergs! It is therefore
evident that after eleven half-oscillations one-half of the energy
will have been expended in radiation. The rapid damping of
the oscillations, indicated by our experiments, was therefore neces-
sarily determined by the radiation, and would still occur even if
the resistance of the conductor and of the spark became negligible.

To furnish energy amounting to 2400 ergs in 15 hundred-
millionths of a second is equivalent to working at the rate of
22 horse-power. The primary oscillator must be supplied with
energy at fully this rate if its oscillations are to be kept up
continuously and with constant intensity in spite of the radia-
tion. During the first few oscillations the intensity of the
radiation at a distance of about 12 metres from the primary
conductor corresponds to the intensity of the sun’s radiation at
the surface of the earth.

The Interference- Experiments

In order to ascertain the velocity of propagation of the
electric force in the equatorial plane, we caused it to interfere

1 [See Note 23 at end of book.]
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with the action of an electric wave proceeding with constant
velocity along a wire! It appeared that the resulting inter-
ferences did not succeed each other at equal distances, but
that the changes were more rapid in the neighbourhood of the
oscillation than at greater distances. This behaviour was
explained by the supposition that the total force might be
split up into two parts, of which the one, the electromao'netlc
was propagated with the velocity of light, while the other,
the electrostatic, was propagated with a greater, and perhaps
infinite velocity. But now, according to our theory, the force
under consideration in the equatorial plane is—

7 — Bl j sin (mr — nt) cos (mr— nt) sm (mr — nt)
4= [ — e T 5

mr m2r? m3r3
and this expression can in no way be split up into two simple
waves travelling with different velocities. Hence if our present
theory is correct, the earlier explanation can only serve as an
approximation to the truth. Let us now investigate whether
the present theory leads to any explanation of the phenomena.
To begin with, we can write Z = B sin (nf — 3,), where the
amplitude of the force B= El~/ 1 —m2?%+m**/7%, and the

phase 8, of the force is determined by the equation—

sin mr/mr + cos mr [m*r? — sin mr/m37~3

tan 81 =

cos mr[mr — sin mr[m?r? — cos mr [m3r®
which, after transformation, gives

8, =mr —tan™! _m/’:n%z.

In Fig. 31 the quantity &, is represented as a function of
mr by the curve 8. The length b in the figure corresponds
to the value of 7, both for abscisse and ordinates. If we
regard 7, instead of mr, as the variable abscissa, the length a b
in the abscisse corresponds to the half wave-length. For the
purpose of referring directly to the experiments which we wish
to discuss, there is placed beneath the diagram a further
division of the axis of abscisse into metres. According to the
results obtained by direct experiment? A is put = 48 metres, and

1 See VII., p. 107. 2 See VIII., p. 124.
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from this the length of the metre (or scale of divisions) is
determined ; but the first mark of the divided scale is not at
the oscillator, but is placed at a distance of 0-45 metre beyond
the latter. In this way the divisions represent the divisions

. .
&N Aatii e R L R e Lt T, WU \
. ~
~

b ) ]
&2 18 14

Fig. 31.

of the base-line which we used in determining the interferences.
We see from the figure that the phase does not increase from
the source; its course is rather as if the waves originated at
a distance of about I\ in space and spread out thence, partly
towards the conductor, and partly into space. At great
distances the phase is smaller by the value 7 than it would
have been if the waves had proceeded with constant velocity
from the origin ; the waves, therefore, behave at great distances
as if they had travelled through the first half wave-length with
mfinite velocity.

The action w of the waves in the wire for a given position
of the secondary conductor can now be represented in the form
w=C sin (n¢ — §,), wherein d, is used as an abbreviation for
mr+08=mr/x 48 A denotes the half wave-length of the
waves in the wire, which in our experiments was 2'8 metres.
6 indicates the phase of its action at the point » = 0, which
we altered arbitrarily by interposing wires of various lengths.
Similarly we were able to alter the amplitude C, and we made
it of such magnitude that the action of the waves in the wire
was approximately equal to the direct action. The phase of
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the interference then depends only upon the difference between
the phases 8, and 8, With that particular adjustment of the
secondary circle to which our expression for w relates, both
actions reinforce one another (ze. the interference has the
sign +) if 8 —3, is equal to zero or an odd multiple of
24r; the actions annul one another (¢.c. the interference has
the sign — ) if &, — &, is equal to 7 or an odd multiple of it;
no interference takes place (the interference has the sign 0) if
8, — 6, is equal to an odd multiple of L.

Let us now suppose that & is so determined that, at the
beginning of the metre-scale, the phase of the interference has
a definite value €, so that 81= 52+e. The straight line 1 in
our figure will then represent the value of 8, + ¢ as a function
of the distance. For the inclination of the line is so chosen that
for an increase of abscissa by A = 2'8 metres, the ordinate
increases by the value 7; and it is so placed that it cuts the
curve 8 at a point whose abscissa is at the beginning of the
metre-scale.  The lines 2, 3, 4, etc., further represent the
course of the values of &,+e—3m, 8, +e—m, J,+e— B,
etc. For these lines are parallel to the line 1, and are so drawn
that they cut any given ordinate at distances of 1, and any
given abscissa at distances of 14 metre. If we now project the
points of intersection of these straight lines with the curve &,
upon the axis of abscissee below, we clearly obtain those
distances for which 81 is equal to O,+ e+ &, S, + e+,
8,4+ e+ 3m, etc, i.e. for which the phase of the interference
has increased by 4, m, §, etc., as compared with the zero-
point. We thus deduce directly from the figure the following
statements :—If at the zero-point of the base-line the inter-
ference has the sign + (—), it first attains the sign 0 at about
1 metre, the sign — (+) at about 2'3 metres, and it again
acquires the sign 0 at about 4'8 metres: the interference
reverts to the sign + (—) at about 7'6 metres, is again 0 at
about 14 metres, and from there on the signs succeed each
other in order at about equal distances. If at the zero-point
of the base-line the interference has the sign 0, it will also
have this sign at about 2:3 metres, 7'6 metres, and 14 metres ;
it will have a marked positive or negative character at about
1 metre, 4'8 metres, and 11 metres from the zero-point.
Intermediate values correspond to intermediate phases. If this
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theoretical result is compared with the experimental result, and
especially with those interferences which occurred on introducing
100, 250, 400, and 550 cm. of wire,! the accordance will be
found as complete as could possibly be expected.

I have not been able to account so well for the inter-
ferences of the second kind.2  For producing these interferences
we used the secondary circle in a position in which the most
important factor was the integral force of induction around
the closed circle. If we regard the dimensions of the latter as
vanishingly small, the integral force is proportional to the rate
of change of magnetic force perpendicular to the plane of the
circle, and is therefore proportional to the expression—

ap _ AR { __cos (mr—nt) 4 sin (mer —nt)}.

dt mr mr?
Hence we deduce the phase 3, of this action—

tan S cos mr/mr —sin mr[m?r?
> sin mr/mr + cos mr/m?*r?

or, after transformation—

8, = mr — tan—! mr.

The line 8, of Fig. 31 represents the course of this function.
We see that the phase of this action increases continuously
from the origin itself. Hence the phenomena which point to
a finite rate of propagation must, in the case of these inter-
ferences, make themselves felt even close to the oscillator.
This was indeed apparent in the experiments, and therein lay
the advantage presented by this kind of interference. But,
contrary to the experiment, the apparent velocity near to the
oscillator comes out greater than at a distance from it; and
it cannot be denied that, according to theory, the change of
phase of the interference should be slightly, but noticeably,
more rapid than it was in the experiments. It seems to me
probable that a more complete theory—in which the two con-
ductors used would not be regarded as vanishingly small,—
and perhaps a different estimate of the value of A, would
establish a more satisfactory agreement.

1 See p. 118. * See p. 119.
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It is, however, important to notice that even on the basis of
Maxwell’s theory, the numerical results obtained cannot be ex-
plained without assuming a considerable difference between the
rates of propagation of the waves in wires and in free space.

Waves in Ware-shaped Conductors
The function K(pp) = f el ey,
o

which, for large values of p, approximates asymptotically to the

function / w/2pp . ¢ 7, and for infinitesimal values of p to the
function —log (pp/2) — 0-577,satisfies the differential equation—

2K (
@R(pp) , 1 AR (pp) —?K(pp) = 0.
dp* p dp
If we therefore put—
2J
II ="— .sin (mz —nt). K(pp),
An
then II satisfies the equation AZ2d%II/df*= All, if we make
p*=m?—A%n%  Here J must be understood to represent
a current expressed in magnetic measure, p and m = mw/\
reciprocals of lengths, and n == /T the reciprocal of a time.
The function II satisfies its equation through all space, except
along the z-axis, where it is discontinuous. The values
R, Z, P, N, which can be deduced from the above II, represent
therefore an electrical disturbance taking place in a very thin
wire stretched along the z-axis. In the immediate neighbour-
hood of this wire, neglecting quantities which contain even
powers of p, we have—

2J

Q,=— v sin (mz—nt),

and therefore—

R,= % . cos (mz — nt),

2J
P,=—.cos (mz—nt),

in which the suffix 0 indicates that p is assumed to be
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vanishingly small. ~ From the expression for R it follows that
the quantity of free electricity ¢ in unit length of the wire is—
e= _-57: . 2mp . Ry = Zz cos (mz — ni).

Similarly from the expression for P, it follows that the
current ¢ is—

1= -1”. 2mp . P =J cos (mz— nt).
4

The values of ¢ and ¢ satisfy of themselves the necessary
equation Ade/dt = —di/dz. They show us that the disturb-
ance under consideration is an electric sine-wave which is
propagated in the positive direction along the axis of z, whose
half wave-length is A, and half-period of oscillation T, whose
velocity is therefore A/T =x/m, and whose intensity is such
that the maximum current which arises is = J.

If we stipulate that external forces may be made to act
arbitrarily in the wire, we may regard A and T as being inde-
pendent of each other. For every given relation between these
quantities, 7.e. for every given velocity of the waves, the lines
of electric force have a definite form which, independently of
time, glides along the wire. As before, we represent this form,
drawing the lines Q = const.

o 6. c.
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Such a representation is carried out in Fig. 32. 1In the
first place, Fig. 32, represents the case in which the velocity is
very small and therefore p =m. The drawing then represents
a distribution of electrostatic force, viz. that which is obtained
when we distribute electricity upon the wire so that its density
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is a sine-function of the length of the wire. Fig. 32, gives
the lines of force for a velocity amounting to nearly 28/48 of
that of light. We see that in proceeding from and returning to
the wire the lines of force make a wider circuit than before.
According to the older mode of conception, this would be
explained by saying that the electromagnetic force, which is
parallel to the wire, weakens the component of the electrostatic
force in the same direction, whereas it does not affect the
component perpendicular to the wire. The weakening of the
component parallel to the wire may even amount to annulling
it altogether. For if we take the velocity of propagation of the
wire-waves as being equal to that of light, » becomes zero,
K(pp) reduces to —log p 4 const. for every value of p, and
for every value of p—

2J .
= — —.8In (mz—nt),
Q=== . sin (me—nt)
and therefore—
2dm o
R= . cos (mz—nt), Z =0,
Anp
2
P=".cos (mz—nt), N=0.
p

The distribution of force then is the simplest that can be
conceived ; the electric force is everywhere normal to the wire
and decreases in inverse proportion to the distance from it.
The lines Q = const., drawn for equidistant values of Q, are
represented in Fig. 32, For waves travelling with a velocity
greater than 1/A, p becomes imaginary. For this case our
formulse would require transformation, but as it has no practical
significance, we need not discuss it.

At the surface of a conductor, that component of the elec-
tric force which is tangential to the surface continues without
discontinuity in the interior of the conductor. According to
Maxwell, a perfect conductor is understood to mean one in
whose interior there can only exist vanishingly small forces.
From this it necessarily follows that at the surface of a perfect
conductor the components of the force tangential to the surface
must vanish. Unless this statement is incorrect, it follows
that electric waves in wires of good conductivity must be
propagated with the velocity of light and in the form which is
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represented in Fig. 32, For only in this particular force-
distribution is the force everywhere normal to the surface of
the wire. In fact, then, it follows from Maxwell’s theory,
as well as from the older theories, that electric waves travel
along perfectly conducting wires with the velocity of light

If, on the other hand, we are to place any reliance upon
our experiments, this conclusion is incorrect—the propagation
takes place with a much smaller velocity and in some such
form as is indicated in Fig. 32,. The result is all the more
remarkable, because the velocity in wires appears likewise to
be a velocity which is quite independent of the nature of the
wire. I have found it to be the same in wires of the most
diverse metals, varying widely in thickness and in the shape
of their cross-section, and also in columns of conducting
fluids. The causes which determine this velocity still remain
obscure. The resistance, at all events, has nothing to do with
it. For some time I thought that it might be affected by the
constant %, through the introduction of which Hr. H. v.
Helmholtz has extended Maxwell’s theory ;! but further con-
sideration led to the rejection of this idea. If only the
limiting condition were correct, a wave of the form of Fig,
32, would yet be possible. This would always be a pure
transversal wave, and as such must travel with the same
velocity as plane transversal waves in space, whether simul-
taneous longitudinal waves are possible or not. Although a
finite value of the constant ~ would not explain the difference
between the two velocities, it would postulate the possibility
of two kinds of waves in the wire with different velocities :
experiment has hitherto given no intimation of such a pheno-
menon. It seems rather to be doubtful whether the limiting
condition is correct for rapidly alternating forces.

Although it does not appear to be possible, on the one hand,
to confer a velocity of any desired magnitude upon the waves
travelling along the z-axis, there is no difficulty, on the other
hand, in reducing the velocity as much as may be desired below
1ts maximum value, or in producing distributions of force
intermediate between the forms 32, and 32,. With this
object the waves are made to proceed along crooked wires or
wires rolled into spirals. For example, I rolled a wire 40 metres

! H. v. Helmholtz, Ges. Abh. 1, p. 545.
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long into a spiral 1 cm. in diameter, and so tightly that the
length of the spiral was 16 metre ; in this I was able to observe
nodes at distances of about 0:31 metre, whereas, in the straight
wire, the nodes were 2'8 metres apart. As the spiral was stretched
out, the one value changed gradually into the other. Hence,
when the velocity is measured along the z-axis (the axis of
the spiral), the wave moves much more slowly in the coiled
wire. When the velocity is measured along the wire itself,
on the other hand, the wave certainly moves more rapidly.
Along crooked wires the behaviour is similar. Unless I
am mistaken, Maxwell’s theory, assuming the limiting con-
dition for good conductors, is unable to account for this.
It seems to me that according to this theory the propagation,
measured along the z-axis, must for every form of conductor
take place with the velocity of light ; provided, in the first place,
that the resistance of the conductor does not come into con-
sideration, and, in the second place, that the dimensions of the
conductor perpendicular to the axis are negligible in comparison
with the wave-length. Both conditions are satisfied by coiled
metallic wires; but what should happen does not happen.

In our endeavour to explain the observations by means of
Maxwell’s theory, we have not succeeded in removing all
difficulties. Nevertheless, the theory has been found to account
most satisfactorily for the majority of the phenomena; and it
will be acknowledged that this is no mean performance. But
if we try to adapt any of the older theories to the phenomena,
we meet with inconsistencies from the very start, unless we
reconcile these theories with Maxwell’s by introducing the
ether-as dielectric in the manner indicated by v. Helmholtz.



